
RESEARCH REPORT

Foreword by Gene Kim, Gareth Rushgrove, John Willis, Jez Humble, and Nigel Simpson

2015 State of the Software
Supply Chain Report:
HIDDEN SPEED BUMPS ON THE ROAD
TO “CONTINUOUS”

Page 2
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

TABLE OF CONTENTS

Foreword . 3

Introduction . 5

Why All Modern Software Development Relies on a Software Supply Chain . 6

SUPPLIERS: Open Source Projects . 7

 Public Repositories (The Warehouses) . 8

 Choosing the Best Suppliers (Sourcing) . 9

PARTS: Open Source Components .12

 Repository Management (Local Warehouses) .15

MANUFACTURERS: Assembled Software Development .19

 Technical Debt: Assembly Line Inefficiencies .21

FINISHED GOODS: Software Applications .22

 The Volume of Elective Re-work and Risk .22

 Software Bill of Materials .23

 Quality Controls: OWASP, PCI, FS-ISAC, U .S . Congress .23

Lessons Learned from Traditional Manufacturing Supply Chains .25

Automation: How To Improve Software Supply Chains .26

Appendix .28

Figure 1: The Volume and Size of the Global Software Supply Chain

Figure 2: Target Benchmarks for Software Supply Chain Practices - Quality Control

Figure 3: Target Benchmarks for Software Supply Chain Practices - Efficient Distribution

Figure 4: Analysis of Components Used within Applications

Figure 5: Multiple Versions of Parts Often Downloaded by the Largest Development Teams

Figure 6: Volume of Defective Parts Used

Figure 7: Comparison of Impact of Supply Chain Complexity on Prius versus Volt

Figure 8: Efficient Sourcing Practices By Manufacturers

Page 3
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Gene Kim, Co-author of “The Phoenix Project: A Novel About IT, DevOps, and Helping Your

Business Win” and upcoming “DevOps Cookbook”

“Anyone who believes, as I do, that we can learn valuable lessons from manufacturing and supply
chains on how to better manage technology work will love this report . To describe how we assem-
ble and integrate open source software into the services we create, Sonatype uses the metaphor
of the ‘software supply chain .’ This metaphor enables some startling revelations on how we should
select the components we use and the downstream effects of the decisions we make .

“As the custodians of the Central Repository, the largest open source repository in the world,
Sonatype has insights into how the largest software supply chains in the world are managed—
they’ve analyzed how over 106,000 organizations use over 1 million open source software
components, spanning billions of component downloads .

“Just as in manufacturing, the effective management of our supply chains will create winners
and losers . This will impact the quality of the services we deliver to our customers, as well as our
ability to secure and maintain those services .”

“Just as in
manufacturing,

the effective
management
of our supply

chains will
create winners

and losers.”

FOREWORD

Jez Humble, Vice President at Chef, co-author of
“Continuous Delivery and Lean Enterprise”

“The use of open source software components has become pervasive in the enterprise -- and
rightly so . This reuse reduces complexity and time-to-market while increasing the security and
reliability of software when done right .

“However, the research shows us many organizations are not doing it right . The result is a
profusion of complexity in production systems that leads to poor quality, unreliable services as
well as providing a rich target for bad actors .

“This report provides vital insight into the state of our software supply chain and practical ad-
vice on how organizations can innovate at scale while optimizing quality and security .”

“This report
provides vital

insight into
the state of our
software supply

chain.”

Page 4
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

John Willis, DevOps Days core Organizer and co-author of the upcoming “DevOps Cookbook”

”Deming was one of the original prophets of Supply Chain hygiene . It’s great to see this subject
being discussed related to the software industry and more importantly dealing with Open Source .

“Moreover, in a world that is vastly moving to containers and immutable infrastructure, the
subject of Software Supply Chains is going to become of increased importance . “

“In a world that is vastly moving to containers and immutable infrastructure the subject of
Software Supply Chains is going to become of increased importance.”

Nigel Simpson, Director of Enterprise Architecture, Fortune 100 Media & Entertainment
Company

“This report draws parallels with traditional manufacturing supply chains, giving us a new
way to look at how we build software . With this fresh perspective we can see the importance
of effectively managing the software supply chain, especially when software engineering is
becoming increasingly commoditized through the use of reusable, off-the-shelf, open source
components .

“With visibility into the supply chain, we’ve identified many ways to streamline development and
reduce risk . Just as in the automotive industry, where use of flawed components such as airbags
has downstream impact on vehicles spanning multiple brands, we discovered that standardiza-
tion of flawed open source components can impact hundreds of applications . Understanding the
composition of our mission-critical applications has never been more important .”

“This report
draws parallels
with traditional
manufacturing
supply chains.”

Gareth Rushgrove,
Senior Software Engineer, Puppet Labs / Curator of “DevOps Weekly”

“It’s easier than ever to build complex systems quickly using open source components downloaded
from the Internet . But where does that software (and its dependencies) come from? How do you
keep it up to date? Is it introducing a critical security flaw to your application? The move towards mi-
croservices and polyglot programming environments makes these issues even more pressing, and
the number of third-party components has grown too large to manage in a non-systematic way .

“This report introduces approaches that can be used to mitigate the risks of poor software supply
chain management . Better still, the discussion focuses on techniques that have been successful-
ly applied in other industries, along with hard numbers that show the size of the problem . This
report is required reading for anyone interested in large-scale systems engineering .”

“This report is
required reading

for anyone
interested in
large-scale

systems
engineering.”

Page 5
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

INTRODUCTION

Organizations continually strive to produce quality

software even faster and more efficiently . Over the

past decade, software development practices have

witnessed significant changes that have greatly

improved velocity, agility, and innovation . Key

among these is the reliance on open source or third

party component “building blocks” freely available

from a wide variety of sources . As a result, 80-90%

of a typical application is made up of components

used to quickly add valuable features without

custom coding1 . The use of open source as well as

other build components has led to the creation of a

software supply chain .

While open source components and software sup-

ply chains are delivering huge benefits in terms of

speed, the free-for-all nature of component avail-

ability and consumption practices also have led to

significant waste, lower quality, and increased drag

often not recognized by CIOs, enterprise architects,

DevOps leaders, and software development teams .

To begin improving the software supply chains that

feed our software development practices, organiza-

tions first need to recognize that they exist and see

the inefficiencies that are often hidden from view .

As the steward of the Central Repository, Sonatype

watches over the world’s largest public open source

repository every day . Our role as steward enables us

to provide a detailed perspective on the suppliers,

consumption volumes, distribution mechanisms,

and quality attributes of open source components

that flow across today’s software supply chains .

Our study of Central’s use by more than 106,000

software development organizations in 2014

astounded us—so much that we wanted to share

our analysis in this first-ever report on the State

of the Software Supply Chain . We discovered

that current practices are silently sabotaging a

software development organization’s efforts to

accelerate development, improve efficiency and

maintain quality . In short, our dependence on

open source software components is growing

faster than our ability to effectively source, man-

age, and secure it .

As you read this report, you’ll discover eye-opening

statistics on the usage of open source components .

While this report offers sobering news about the

state of the software supply chain, it also adds

perspective on how a number of organizations

have taken steps to improve their software supply

chains . We need not reinvent the wheel . We need

to recognize that traditional supply chain principles

also apply to software development and can have

the same transformative effect .

Given this evidence and the drive towards contin-

uous and DevOps practices, software supply chain

automation should be the new aim for software

development organizations that want to make the

world’s best software, responsibly and profitably .

This aim is simple and achievable . There are lessons

that can be learned from traditional manufacturing

supply chains to help organizations overcome the

challenges identified through this research:

1 . Use fewer and better suppliers

2 . Use only the highest quality parts

3 . Track what is used and where

We have seen enterprises apply these principles and

boost developer productivity from 15 - 40% by:

• Reducing unplanned, unscheduled rework

• Reducing the mean-time-to-remediate issues

• Reducing the number of known defective parts

• Reducing mountains of technical debt

• Reducing complexity that leads to

maintainability issues

Page 6
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

WHY ALL MODERN SOFTWARE DEVELOPMENT RELIES ON A
SOFTWARE SUPPLY CHAIN
A View Across 106,000 Organizations

In traditional manufacturing, we have suppliers, parts, warehouses, manufacturers, assembly lines
and finished goods. In software development we have uncanny similarities. Yet software supply
chains lack the rigor and processes that have fueled high-velocity production, operational efficien-
cies, and competitive differentiation witnessed in other supply chains.

If your company develops software, you’re likely

consuming thousands of open source and pro-

prietary components . Although your aim is to

produce the highest-quality software in the most

efficient way, a closer look at the statistics shows

a potentially different story . By understanding

the software supply chain operating—largely

hidden—at the core of your operations, you can

more easily make small changes that yield dra-

matic gains .

As the steward of the Central Repository, the larg-

est public open source repository, Sonatype has

amassed a vast amount of data on the size, scale,

velocity, and patterns of open source consumption

across common software supply chains .

You’ve got ...

SUPPLIERS
Open Source

Projects

You’ve got ...

PARTS
Open Source

Components &
Warehouses

You’ve got ...

MANUFACTURERS
Software

Development
Teams

You’ve got ...

FINISHED
GOODS

Software
Applications

The Modern Software Supply Chain

Page 7
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

SUPPLIERS: OPEN SOURCE PROJECTS

A massive community of open source projects represents the
external supplier base that feeds software supply chains. But
unlike physical parts being consumed within traditional supply
chains, once a software component is made available, it is never
taken out of circulation. This means developers inadvertently
can continue to use the old, outdated parts even when newer,
better versions are available.

Open source means open access . It is community driven and commu-

nity supported . Open source is absolutely essential for today’s develop-

ment processes . The increasing reliance on open source components

has paralleled massive growth in component contributions from open

source and third-party projects across all development languages .

Where only a handful of open source projects were active in the early

1990’s, OpenHub .net is currently tracking over 668,000 open source

projects and over 3 .7 million open source contributors2 . The massive

demand for open source components within software supply chains is

being fed by this growing community of contributors and projects .

One significant difference between traditional suppliers and open

source suppliers is that, in the open source world, components never

reach their “end of life” or get retired . Once released into public re-

positories, outdated components continue to be available to software

supply chains .

Image 3: Growth in new modules created by open source projects, 2014-2015.
Source: http://www.modulecounts.com

SUPPLIERS
Open Source

Projects

DID YOU KNOW?

Nearly 1,000 new or
updated components

are added to the
Central Repository

every day.5

On average,
components are

updated 3.5 times
per year. There is
no way to inform

development teams.9

Mean-time-to-
repair a security

vulnerability
in component

dependencies is
390 days.10

Module Counts (Components)

Page 8
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Public Repositories (The Warehouses)

In 2014, public repositories—which serve as “warehouses” at the heart of software supply
chains—handled billions of download requests serving a global developer population of more
than 11 million. 3

Open source projects upload their open source com-

ponents to a variety of warehouses where they can

be freely shared by millions of developers anywhere,

any time . These warehouses are commonly known in

the software supply chain as public repositories such

as the Central Repository, npmjs .org, rubygems .org,

pypi .python .org, and NuGet .org . Here is a snapshot of

recent use of public repositories:

Public Open Source
Repositories

Download Requests Served
(Annualized)

central.sonatype.org 17,213,084,947

npmjs.org 15,460,748,856

rubygems.org 4,959,638,830 (since inception)

NuGetGallery.org 280,124,916

The never-ending supplier ecosystem of

components and versions

As mentioned earlier, the Central Repository is the

source of record for Java and related open source

software components . This repository is the most

heavily used of its kind handling 17 .2 billion requests

in 2014 alone4 and, as such, offers the widest-angle

lens into the open source ecosystem and the soft-

ware supply chains it serves . We have analyzed data

from the Central Repository to help provide a better

understanding of the software supply chain through-

out this report .

Deeper analysis of the open source projects within

the Central Repository showed more than 105,000

open source projects (categorized by Group-Artifact

- GAs) are housed there5 . When considering mul-

tiple versions of each component (categorized by

Group-Artifact-Versions - GAVs), there were 834,399

components at the end of calendar year 20146 . As

of June 2015, the number of component versions

exceeded 974,0007 and is well on its way to or above

1 million by the time you read this report . In the

context of software supply chains, these projects

represent the total number of suppliers while GAVs

represent the total catalog of unique parts available .

Analysis of download requests from the Central

Repository reveals 106,0878 organizations request-

ed components in 2014 . Automated requests can

originate from a variety of sources, including popular

build and design tools (Aether, Ant, Ivy, Leiningen,

Source: Each public repository provides statistics on
activity levels for their communities.

Image 4: The growth of download requests from the Central
Repository have grown 30-fold since 2007. Source: Sonatype.

201320122011200920082007 2010

2B1B500M 4B 6B 8B 13B 17B
2014

Page 9
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Gradle, Maven, Eclipse), repository managers (Archi-

va, Artifactory, Nexus), and orchestration platforms

(Puppet, Chef, Rundeck) .

While the global base of open source projects has fed

software supply chains for many years, they’re not the

only suppliers . As development organizations look

to push the envelope on speed, they are looking for

new sources for software, infrastructure, and services .

For example, developers are looking for new ways

to create Docker images and share them with other

developers . For this purpose, Docker, Inc . runs Docker

Hub, allowing companies to search and pull images

as needed . Organizations like CoreOS Enterprise Reg-

istry provide a similar service .

As popularity of reusable containerized images,

microservices, binaries, and code continues to grow,

the supplier ecosystem will continue to expand to

support this need .

Lack of meaningful communications channels

Unlike a traditional supply chain where the parts sup-

plier and manufacturer have a clear relationship and

communications channel, in a software supply chain

that communication channel is not only broken, for

many it simply doesn’t exist .

While a handful of projects release new component

versions weekly, on average a project will release

new versions 3 .5 times a year9 . These releases might

provide new functionality, improve performance, fix

bugs, or occasionally patch newly found security vul-

nerabilities (which are generally slower to be remedi-

ated) . The lack of a communications channel, coupled

with the fact that a component is never taken out

of circulation, makes the chances even greater that

development teams will unknowingly use outdated,

defective parts .

Choosing the Best Suppliers (Sourcing)

There is a robust and active ecosystem of suppliers providing a steady stream of innovative com-
ponents to feed the demands of software supply chains. However, like in traditional manufactur-
ing, not all suppliers deliver parts of comparable quality and integrity. Research shows that some
open source projects use restrictive licenses and vulnerable sub-components, and some projects
are far more diligent at updating the overall quality of their components.

Choosing an open source project supplier should be

considered an important strategic decision, because

changing a supplier is far more effort than swapping

out a specific component version . Like tradition-

al suppliers, open source projects have good and

bad practices impacting the overall quality of their

component parts . Where traditional manufacturing

supply chains intentionally select specific parts from

The lack of a communications channel makes the chances even greater
that development teams will uknowingly use outdated,

defective parts.

Page 10
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

approved suppliers, software supply chains rely on

an unchecked variety of supply . Development teams

choose whatever technology is deemed appropriate,

as well as whatever version might be in vogue at the

time of selection, introducing a significant degree of

unnecessary complexity—and sometimes risk .

Hidden component defects

Not unlike traditional finished goods, a single part

may rely on many other parts to function proper-

ly . In software development, components are like

molecules, not atoms . A single component may

rely on hundreds of other sub-components known

as dependent components . A direct dependency

(aka 1-hop) is a component directly tied to the core

component . As shown in image 5, there are multiple

layers of dependencies . This complex, inter-related

web of components makes it even more difficult for

some open source projects to manage vulnerabili-

ties in their own software, even despite best efforts

to produce quality code . As a result, neither the

open source project—or the development teams

who consume them—are aware of known vulnera-

bilities in dependent components .

Mean-time-to-repair (M-T-T-R)

Overall, defect rates between open and closed

source projects have been well documented and

are believed to be comparable . But until 2014, little

quantitative analysis had been available on the

mean-time-to-repair (MTTR) defects within open

source projects . In order to shed new quantitative

light on this discussion, Sonatype initiated an analy-

sis of open source project code bases hosted within

the Central Repository .

Although the average open source project may

release new component versions 3 .5 times a year, it

does not necessarily mean they are patching known

security-related issues . In fact, in their seminal USENIX

article Almost Too Big To Fail, Dan Geer and Josh Cor-

man, shared findings from the Sonatype analysis . “An

early analysis of open source projects with already

identified vulnerable dependencies revealed some

troubling behavior . Direct (aka ‘1-hop’) vulnerable

component dependencies were only remediated 41%

of the time . Put differently, more than half (59%) of

the vulnerable base components remain unrepaired .

Folding multiple components into your projects

means inheriting not just the components’ function-

ality but also their (largely unrepaired) flaws . For the

41% that were fixed at all, the MTTR was 390 days

(median 265 days) . Filtering for just Common Vulner-

ability Scoring System (CVSS) level 10 vulnerabilities

brought the mean of this subset down to 224 days .

And this is just for 1-hop dependencies—there is as

yet no mechanism to cause remediated flaws to flow

automatically through the dependency graph, and

there may never be .” 10

Hidden license complexity

Open source license risks are well known across the

development community but are not always well

understood . This is a key factor when choosing an

open source supplier and component . According to

long-time hosting provider SherWeb: “Taking what’s

already been created, adding to it, improving upon

Image 5: A single component may rely on hundreds of other
sub-components known as dependent components.

Page 11
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Image 6: There are a wide variety of open source licenses, each with a different set of obligations for the user.
Source: Brian Fitzgerald, Sonatype, Inc.

Free Open Source Software (FOSS) Licenses

it, and in turn sharing it with a worldwide commu-

nity is what has allowed open source innovations to

become ‘arguably the single most influential body

of software around the world .’ But it has also left

many open to attacks from those who would claim

the process by which they invented software is theirs

and theirs alone . Open source is everywhere, from

mobile phones to medical devices to supercomputers

to home appliances, and as such patent lawyers have

never been busier .”11

Sonatype’s analysis of the components in the Central

Repository revealed that 34% included restrictive GPL

licenses .12 Image 6 developed by Ritambhara Agrawal

of Intelligere provides a high-level description of the

different licenses often assigned to open source and

third-party software components .

Many lawsuits have arisen from the improper use of

open source software, including well-known cases

like BusyBox vs . Monsoon, Cisco vs . FSF, and Oracle

vs . Google . While an improper license will not impact

the performance of software, it can lead to enormous

headaches, legal fees, and unplanned rework to re-

move the undesirable component .

Open source is everywhere, from
mobile phones to medical devices

to supercomputers to home
appliances, and as such patent

lawyers have never been busier.

Page 12
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

PARTS: OPEN SOURCE COMPONENTS AND
LOCAL WAREHOUSES

Software components age more like milk than wine, so compo-
nents that were once thought to be reliable can be discovered to
be vulnerable in the future. Most troubling, organizations un-
wittingly continue to use known vulnerable components at an
alarming rate. Analysis shows that 51,000 of the components in
the Central Repository have known security or license concerns
and that 6.2% of all components downloaded from Central last
year included known vulnerabilities.13

Due to a lack of adequate visibility, tools and processes, most devel-

opment organizations are unaware of the known vulnerabilities or

license risks in the open source components downloaded from the

public repositories . There is a generally accepted notion that “with many

eyeballs, all bugs are shallow” in open source components . It is true that

broad open source adoption means that many organizations are—in

effect—testing the components, however as noted previously:

1 . Once a component is shared in a public repository, it stays there for-

ever even after many newer, safer versions have been introduced .

2 . A once safe component may be found to be vulnerable at any time .

3 . Components often depend on other components in order to func-

tion, much like an engine needs multiple other parts . If a vulnerabil-

ity is found in a component dependency, it is generally very difficult

for either the supplier (open source project) or the development

teams to know about it—or track it down and fix it .

4 . There is clear evidence that known vulnerable or defective compo-

nents stored in public warehouses are downloaded by unknowing

development teams, and end up in our software largely unnoticed .

How can known vulnerabilities be largely unnoticed? There is a funda-

mental lack of automation to put essential, relevant information in the

right hands, at the right time, and at the right place .

PARTS
Open Source

Components &
Warehouses

DID YOU KNOW?

There are nearly
1 million unique

components in the
Central Repository

alone.

51,000 components
in the Central

Repository have
a known security

vulnerability.

283,000 components
in the Central

Repository have
known restrictive

licenses.

Source: See Appendix,
Figure 1.

Page 13
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Developers simply don’t have the time and are not

incented to manually research each component .

Other groups like open source review boards, legal

and compliance teams, or security professionals are

sometimes called in to support these efforts . But very

few have the ability to track the current vulnerability

or license status of components being used at the

velocity in which they are being consumed .

The rapidly disseminated, global alert surrounding

the OpenSSL Heartbleed vulnerability was an anoma-

ly . While Heartbleed received international notoriety

within a matter of days, there are an average of 50

security vulnerabilities found in open source compo-

nents every day14 that do not receive due attention .

Authors Geer and Corman also discuss this topic in

their USENIX article15: “The ‘Legion of the Bouncy

Castle Java Cryptography APIs’ had a CVSS worst-

case scenario fixed in April of 2008—more than six

years ago . While CVE-2007-6721 is a severe security

flaw in a security-sensitive project, nevertheless the

unrepaired, vulnerable version was requested from

Central Repository 42,124 times in 2014 .16

Geer and Corman continued, “Similar (disappointing)

consumption patterns exist for Struts . Outside of CVE-

2013-2251 compromised organizations, still vulner-

able versions of Struts 2 continue to remain popular .

Worse, Struts version 1-related artifacts still had

755,437 downloads in 2014,17 despite its April 5, 2013

public warning . In other words, finding and fixing

serious flaws in open source does not mean that the

repaired versions are the ones that are used .”

Image 7: Defective component downloads by large financial services and technology firms in 2014. Refer to Figure 6 in the
appendix for more details.

ORDERS QUALITY CONTROL

Average
Component
Downloads

(Orders)

Average
Downloads
with Known

Vulnerabilities
(Defects)

Percentage
with Known

Defective Parts

Component
Downloads with
Known Defects

Older than 2013

Percentage with
Known Defects

Older than 2013

Average consumption
by large financial or
technology firms 240,757 15,337 7.52% 10,426 66.28%

Image 8: Organizations continue to use known vulnerable com-
ponents years after alerts have been issued. Source: Sonatype.

While Heartbleed received inter-
national notoriety within a matter

of days, there are an average of
50 security vulnerabilities an-

nounced in software every day
that do not receive due attention.

Page 14
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Placing these comments in the context of traditional

supply chains, imagine the impact of sourcing parts

with known defects . Can you imagine an automak-

er that sourced defective Takata airbags for use in a

2015 model? Or a laptop designer that sourced bat-

teries that are known to catch fire? Or a pharmaceuti-

cal company that uses compounds that are known to

cause birth defects?

Industry Spotlight:

Current Practices >>

One large company in the entertainment industry established a team to monitor and approve open source

components being requested by thousands of in-house developers . However, an analysis of their download

traffic from the Central Repository revealed that 97% of components sourced from public repositories were

outside of the purview of their open source review board . This scenario is quite common . While component

consumption is high and continues to grow, full visibility and control are extremely rare .

Best Practices >>

 To help defend the U .S . government cyber infrastructure, and to help the Department of Homeland Security

and other agencies carry out their cyber defense mandate, U .S . Congressional Representatives Ed Royce (R-CA)

and Lynn Jenkins (R-KS) introduced the “Cyber Supply Chain Management and Transparency Act of 2014 .” The

proposed cyber legislation aims to ensure that any organization selling software, firmware or products to the

federal government is properly managing its software supply chain . The legislation recommended a focus on

three supply chain practices:

1 . Any software, hardware, or firmware sold to a procuring entity must provide a Bill of Materials of third party

and open source components, including their versions .

2 . Any software, hardware, or firmware cannot use known vulnerable components for which a less vulnerable

component is available (without a written and compelling justification accepted by procuring entity) .

3 . Any software, hardware, or firmware must be patchable/updateable (within a reasonable timeframe)—as

new vulnerabilities will inevitably be revealed .

Page 15
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Repository Management (Local Warehouses)

Repository managers are a fundamental first step toward software supply chain automation, fo-
cusing primarily on management of component “parts” within an organization. In this sense, they
serve as local warehouses providing development teams with more efficient and controlled com-
ponent access enterprise-wide. They are used to streamline the acquisition, consumption, sharing
and deployment of components downloaded from public repositories as well as other internal
build components and artifacts.

Some software development organizations are

beginning to automate their supply chains, establish

better best practices, and measure benchmarks . For

example, there are more than 60,000 repository man-

ager installations, such as Sonatype Nexus, Apache

Archiva or JFrog Artifactory . These repositories act as

local warehouses to host open source and proprietary

parts to improve build performance and shorten

supply chain cycles .

While many development organizations have adopt-

ed build tools like Maven, Ant, Ivy, and Gradle, most

have yet to fully employ a repository manager, both

to proxy remote repositories and to manage and

distribute software components .

In an ideal software supply chain configuration, build

tools would interact with a repository manager to

search for binary software components and retrieve

software components on-demand .

By caching and hosting components

closer to the developers and tools

that consume them, builds are faster,

more efficient, and more reliable .

However, in most organizations

build tools point to and retrieve

components from public reposito-

ries directly (e .g ., The Central Re-

pository, NuGet Gallery, RubyGems .

org) . When analyzing the originat-

ing sources of downloads from the

Central Repository, we see 95 .24% of

the requests coming from a variety

of design, build, integration, and

orchestration tools . The remaining

In a software development shop,
any number of these tools or

developers can be simultaneously
downloading components at-will,
which helps explain the practices

that lead to multiple versions
of the same component being

downloaded.

Image 11: Growth in repository manager installations 2013-2015.
Source: Sonatype’s Central Repository

Page 16
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Image 13: Analysis of component distribution and sourcing reveals a significant
level of inefficient behavior.

Why would everyone in your
neighborhood bypass the local
grocery store and instead travel

to a distant dairy farm in order to
get their milk?

4 .76% originate from repository managers .18

In a software development shop, any number of

these tools or developers can be simultaneously

downloading components at-will, which helps ex-

plain the practices that lead to multiple defects and

versions being downloaded .

Shortening supply chains,

speeding up development

If the software supply chain were fully optimized, we

might expect to see the percentages in Image 13 flip .

These percentages tell us that developers today are

inefficiently sourcing virtually all of their components

from distant central warehouses rather than targeting

a source closer to home . Not only do long-distance

requests take longer to fulfill, but they also add unnec-

essary bandwidth costs to operations .

As a simple analogy, why would everyone in your

neighborhood bypass the local grocery store and

instead travel to a distant dairy farm in order to get

their milk?

The impact of poor component

consumption practices

While individual developers may not recognize the

impact of their independent sourcing methods, the

cumulative effect across hundreds or thousands of

developers can add weeks or months to build times

to development teams who are already pressured to

deliver faster .

For example, downtime can become a big factor for

development teams sourcing components directly

from a public repository . While mature repositories

like the Central Repository have high availability

rates, some of the less mature component reposito-

ries experience minutes or hours of downtime each

month . When these outages occur, all development

relying directly on the repositories grinds to a halt .

The frustration experienced by these developers is

evident when social media channels like Twitter light

up with developers in frustrated unison, calling “[XYZ]

repository is down . Fix it now!”

Once cached in their repository manager, developers

and their development tools can

retrieve the component locally, as

many times as necessary across

the organization regardless of the

number of applications needing

it . Repository managers support

the concept of download-once-

use-many-times that improves

sourcing practices and there-

fore are a foundational step in a

broader trend towards improv-

ing performance and control of

components across the software

supply chain .

Page 17
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

The evolving role of repository managers

in the software supply chain

To support continuous delivery, many organizations

prefer to keep everything required to deploy or

re-create an application’s binaries—and the environ-

ments in which they run—in a well-known, stable,

and easily accessible location . Where for many years,

developers have stored binary artifacts in their re-

pository managers, they are now expanding its role

to include other artifacts created and used across the

continuous delivery pipeline .

Repository managers are now used as the internal

“parts warehouse” for tests, database scripts, build

and deployment scripts, virtual machines, containers,

documentation, libraries, configuration files for your

application, and so on . The idea is that at all times a

project has a system of record for all binaries, environ-

ments, and executable deliverables that are known to

be safe for development and deployment .

Continuous Delivery Ltd .’s Dave Farley shared an exam-

ple (see Image 13) of the artifact repository (a .k .a ., re-

pository manager) at the heart of a continuous deploy-

ment pipeline . In his example, the artifact repository

(a .k .a ., repository manager) acts as the central system

of record for all inputs and outputs of the software

supply chain’s production line .

Synchronizing teams across the

software supply chain

Most anyone who has done maintenance program-

ming has had the experience of not being able to

recreate a defect because a change in one of the

tools makes the original binary irrepro-

ducible . The discipline of using a reposi-

tory manager also ensures that everyone

is using the same set of documents and

tools in development . This approach re-

duces the possibility that team members

in other locations or overseas are using

different requirements, building on new

versions or a newer version of the com-

piler, etc .

In most organizations, more than one

repository manager is used . The reposi-

tory managers then are synchronized to

ensure all development teams have access

to the same artifacts for development and

production . When implemented correctly,

everyone on the team is essentially draw-

ing from the same warehouse .

Repository managers are now
used as a the internal “parts

warehouse” for tests, database
scripts, build and deployment

scripts, virtual machines,
containers, documentation,

libraries, configuration files for
your application, and so on.

Image 13: Artifact repositories play a central role in deployment pipeline.
Source: Dave Farley, Continuous Delivery Ltd. 2015. Slides at:
http://bit.ly/1C9y7X8

Page 18
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Industry Spotlight:

Current Practices >>

Analysis of some of the world’s largest financial services and technology firms demonstrates that use of re-

pository managers alone does not improve the quality of components made available to developers . While

companies downloaded an average of 29,697 components to their repository managers, on average, in these

large organizations 7% of all component requests had known defects .19 While many companies pursue “Gold-

en Repository” strategies, where attempts are made to keep only approved components in their repository

managers, we now have quantifiable evidence to show the approach does not work without additional rigor .

Best Practices >>

A global investment banking titan had empowered their developers to consume new components at-will,

through any available channel . When they learned that thousands of in-house developers bypassed their re-

pository manager to download over 2 .6 million components, they recognized the inefficiency of their sourcing

practice as well as the potential for voluntarily inheriting quality, license, and security issues . The bank moved

quickly . They required developers to first query local repository managers for components and, within one

year, the bank reduced Central Repository downloads from 2 .6 million to 95,000 components . By reducing

component downloads, the company eliminated complexity and inefficiency from their software supply chain

which lead to an estimated yearly savings of 30 days of build time .

Using version control for all production artifacts

In leading DevOps and continuous delivery practices,

it’s easy to recreate environments for testing and trou-

bleshooting . Absolutely all artifacts used to create pro-

duction environments and the application that run in

them are version controlled . The ability to get changes

into production repeatedly in a reliable, low-risk way

depends on the comprehensive use of version control .

Similar to practices in other highly-tuned supply

chains, leading software development teams also

pursue strict version controls and traceability for all

of their components . The breadth of version con-

sumption is limited and if any quality defects are later

identified in components that were used, they can be

found in minutes versus weeks .

Page 19
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

MANUFACTURERS: ASSEMBLED SOFTWARE
DEVELOPMENT

Most development teams strive for ever-increasing speed and
throughput. Yet the software assembly process remains rife with
inefficiencies, largely due to a lack of enforceable policies and
guardrails to help developers make better, safer decisions. This is
not a “people problem.” This is an automation problem.

Very few CIOs, software development executives, enterprise architects,

and especially personnel residing outside of the IT organization realize

the extent of their organization’s reliance on the components and the

supply chain that serves them . While legal, security, audit, open source

review boards, and other functional organizations have attempted to

detail and track consumption behaviors, they often fall short of gaining

full visibility .

Time pressures can trump quality

Developers take great pride in their innovations, however time pres-

sures often trump quality especially when time-consuming manual

research is required to properly analyze component suitability . Accord-

ing to the results of of a 2014 Open Source and Application Security

survey20 of over 3,300 developers and IT staff .

• 43% of organizations don’t have development policies that address

open source and third-party component usage across versions, age,

licenses, and security issues .

MANUFACTURERS
Software

Development
Teams

DID YOU KNOW?

1 in every 16
component

downloads included
a known security

vulnerability.4

 43% don’t have
policies to manage

component quality.20

75% of those with
policies don’t enforce

them.20

31% have had or
suspect a breach
in an open source

component.20

Source: 2014 Sonatype Open Source
Development and Application
Security Survey.

Source: Sonatype 2014 survey20

Page 20
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

• Of the organizations with policies in place, 75% of

participants indicated that the policies were not

enforced .

• In organizations with more than 500 developers,

the situation was somewhat better as 73% of

these organizations had a policy in place and 49%

stated that use of open source and third-party

components was strictly enforced .21

Automating acceptability

Organizations wishing to improve the quality and

integrity of components being consumed must rely on

automation . In light of the vol-

ume and velocity of component

consumption we have already

noted, clutching to current man-

ual processes cannot enable an

organization to reach new levels of

productivity and competitiveness .

DevOps and Continuous Delivery

teams should not just go through

a checklist of acceptability, but

also actually define the attributes

that make a software component

acceptable for use . Automated

policies can then enforce things

like “don’t allow anything into my

billing process if it has a severe

security defect,” or “don’t allow anything into my cus-

tomer-facing applications that leverage the fair use

GPL licenses .” Humans need only define the policies,

then use automation for enforcement . Then humans

can manage the occasional exception to the auto-

mated process .

Very few CIOs, software development executives, enterprise architects,
and especially personnel residing outside of the IT organization realize
the extent of their organization’s reliance on the components and the

supply chain that serves them.

Source: Sonatype 2014 survey20

Page 21
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Technical Debt: Assembly Line Inefficiencies

 In one large financial services firm, developers had downloaded 81 of the 85 versions of the Spring
Core framework in 2014. This not only means the investment bank had access to a wide variety
of outdated versions, but that their developers potentially and unknowingly added unnecessary
technical bloat and maintainability challenges to their portfolio.

Within the top 100 most popular components, we

saw that 27 versions of a single component were

downloaded by an average organization in 2014

alone .22 By consuming the poor quality, risky, or

defective components across their supply chains, or-

ganizations were electively building in technical and

security debt . And since few organizations keep track

of which components were used in each application,

the time, effort, and cost of identifying and remediat-

ing those risks is substantial .

Imagine if a company manufacturing insulin pumps

was able to freely select any one of 27 different

pumping mechanisms . The impact is far reaching:

it impacts the assembly line, customer service, and

quality control . The same is true for software .

The cost of context switching

As development teams move toward continuous de-

livery and agile practices, they are even more likely to

work on multiple projects in a given year . When you

are not only switching from one project to the next,

but also switching between multiple component ver-

sions, the impact of context switching is even greater .

As image 10 shows, context switching is proven to

not only impact development speed, but also quality

and job satisfaction .

Image 10: The impact of context switching on development
teams. Source: Dominica deGrandis, DevOps Days Austin 2015

Industry Spotlight:

Current Practices >>

While assisting a federal government organization in analyzing components in a large web application that

helps service millions of citizens, an auditor discovered 11 different logging framework components in use .

This behavior is similar to an automobile manufacturer using four different versions of door locks from four

unique suppliers in one vehicle .23

Best Practices >>

A global Internet search and advertising giant uses tens of thousands of open source and third-party com-

ponents across its developer community . To limit the complexity of its operations, developers are free to

use any high-quality software component, but the company restricts them to using only one of the latest,

most stable versions . By limiting the number of versions used, developers can easily shift between projects

without needing to learn the nuances of an alternative version . It also takes the company less time to iden-

tify and repair defects .24

Page 22
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

FINISHED GOODS: SOFTWARE APPLICATIONS

In the traditional manufacturing supply chain, product quality
and safety are enhanced through diligent tracking of the suppliers
and parts used in each product. However, in the software supply
chain, where an average of 106 components25 comprise 80-90% of
the total application, few organizations have visibility into what
components were used and where.

The Volume of Elective Re-work and Risk

Known defective components lead to quality and integrity issues within ap-

plications . While developers save tremendous amounts of time by electively

sourcing software components from outside their organizations, they often

don’t have time to check those component versions against known vulner-

ability databases, internal open source policies, and other sources of quality

information . Earlier in this report, we showed 6 .2% of downloads from the

Central Repository—at the front of the software supply chain—were compo-

nents that included known vulnerabilities .

Analysis of over

1,500 applications

reveals that by the

time the applica-

tions are developed

and released at the

end of the software

supply chain, a typi-

cal application has 24 known severe or critical security vulnerabilities and 9

restrictive licenses .26

Likewise, in a security analysis across 5,300 applications, Veracode also

found and confirmed that an average application has 24 known security

vulnerabilities associated with open source and third-party components .27

Where most organizations have relied on manual reviews of open source

components used in applications, these practices are proving insufficient .

Based on the volume and velocity of open source and third-party software

components being consumed, it is impossible to check everything manual-

ly . It is simply too expensive and too slow—especially given the sub-com-

ponents or dependencies which are less obvious .

FINISHED GOODS
Software

Applications
DID YOU KNOW?

23% of the
components in the

average application
have critical or
severe known

vulnerabilities.26

There are 9 restrictive
licenses per

application, critical or
severe.26

63% of organizations
keep an incomplete

software Bill of
Materials.28

Components

Known Critical
or Severe
Security

Vulnerabilities

Known restrictive
licenses

106 24 9

Image 9: Components and known security or license risks in
an average application

Page 23
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Software Bill of Materials

Unlike “bill of materials software” which is used in tradi-

tional manufacturing supply chains to list the suppliers

and parts used in a product, a “software bill of materi-

als“ (BOM) is an inventory of the third party and open

source components used to build an application .

As noted in Wikipedia, “The concept of a BOM is

well-established in traditional manufacturing as part

of supply chain management .29 A manufacturer uses

a BOM to track the parts it uses to create a product .

If defects are later found in a specific part, the BOM

makes it easy to locate affected products .

“A software BOM is useful both to the development

organization (manufacturer) and the buyer (custom-

er) of a software product . Builders often leverage

available open source and third-party software com-

ponents to create a product; a software BOM allows

the builder to make sure those components are up to

date and to respond quickly to new vulnerabilities .3

Buyers can use a software BOM to perform vulnera-

bility or license analysis, both of which can be used to

evaluate risk in a product . Understanding the supply

chain of software, obtaining a software BOM, and

using it to analyze known vulnerabilities are crucial in

managing risk .” 30,31

A software bill of materials not only inventories

what is used, but in some cases it also syncs with

real-time component defect data to indicate which

components have known vulnerabilities or license

risks . Various software supply chain automation tools

expand the bill of software much further, alerting

stakeholders automatically when a defect alert oc-

curs . In advanced tools, the entire software lifecycle is

automated to ensure that defective components are

avoided and continuous monitoring instantly identi-

fies newly announced vulnerabilities as soon as they

are discovered .

Quality Controls: OWASP, PCI, FS-ISAC, U.S. Congress

An executive from a well-known U.S. federal agency once said: “There is no building code for
building code.” While that is not 100% true, it does accurately describe the component-based
portion of modern software development. Among the many benefits of supply chain automation
in other industries, quality controls have made products safer and more reliable. However, in the
software supply chain, the lack of controls can, in some cases, result in critical security defects
that may put consumers at risk of losing their credit card data or healthcare history to the highest
bidder in the black market. In the case of defective open source components in medical devices or
cars, the risks can be even greater.

Recognizing the growing and ongoing threat posed

by the use of defective component parts, organiza-

tions representing IT, financial services, healthcare,

and application development have proposed new

guidelines for ensuring the highest-quality parts are

selected, used, and traceable across application port-

folios . These include:

The Open Web Application Security Project

(OWASP): In 2013, OWASP updated its top ten list

of application security threats to include A9, which

advises against “using components with known

vulnerabilities .” The full description from OWASP

states: “Components, such as libraries, frameworks,

and other software modules, almost always run with

full privileges . If a vulnerable component is exploited,

such an attack can facilitate serious data loss or server

Page 24
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

takeover . Applications using components with known

vulnerabilities may undermine application defenses

and enable a range of possible attacks and impacts .”32

Payment Card Industry (PCI): PCI standards help

ensure that banks, financial services firms, and mer-

chants protect their customers’ credit card data . PCI

guidelines were quickly updated following the OWASP

A9 guidelines addressing known vulnerabilities .

Financial Services Information Sharing and Analy-

sis Center (FS-ISAC): The FS-ISAC started the Product

& Services Committee to identify appropriate secu-

rity control types for third-party service and product

providers . This effort is due to the fact that the appli-

cation represents the “new perimeter .” The working

group references Gartner research that states, “Since

enterprises are getting better at defending perim-

eters, attackers are targeting IT supply chains .” The

FS-ISAC report also stated, “Recent breach reports

such as Verizon’s Data Breach Investigations Report

underscore the vulnerability of the application layer,

including third-party software . This new perimeter of

third party software must be addressed .”33

The FS-ISAC committee addressed three suggested

control types that should be implemented based on

the new supply chain reality: vBSIMM process ma-

turity assessment, binary static analysis, and policy

management and enforcement for consumption of

open source libraries and components .

U.S. Congress: To help defend the U .S . government

cyber infrastructure and help the Department of

Homeland Security and other agencies carry out their

cyber defense mandate, U .S . Congressional Repre-

sentatives Ed Royce (R-CA) and Lynn Jenkins (R-KS)

introduced the “Cyber Supply Chain Management

and Transparency Act of 2014 .” The proposed cy-

ber legislation aims to ensure that any organization

selling software, firmware, or products to the federal

government is properly managing its software supply

chain . The legislation recommended a focus on three

supply chain practices: (1) any software, hardware, or

firmware sold to a procuring entity must provide a bill

of materials of third-party and open source com-

ponents, including their versions; (2) any software,

hardware, or firmware cannot use known vulnerable

components for which a less vulnerable component

is available (without a written and compelling jus-

tification accepted by procuring entity); and (3) any

software, hardware, or firmware must be patchable/

updateable (within a reasonable timeframe)—as new

vulnerabilities will inevitably be revealed .34

Page 25
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Number of Suppliers

Ratio of Sales of Prius vs. VoltCost Comparison

Toyota Prius Toyota PriusToyota PriusGM Volt GM VoltGM Volt

200 2

$15,000

$5,000

400 4

$20,000

$10,000

600 6

$25,000

800 8
$30,000

10$35,000

LESSONS LEARNED FROM TRADITIONAL
MANUFACTURING SUPPLY CHAINS

What if manufacturers built cars using the same processes currently used to build software? They
could choose any part from any supplier they wanted. They could choose these parts without
visibility into quality, or which parts or versions their colleagues were using. Every car would likely
have a unique set of parts and a wide variety of known defects already built in as it rolled off the
assembly line. Months or years later, when a defect was widely publicized, they wouldn’t know if
they used that part and, if so, where.

Software is not the first industry to face supply chain

challenges . From automotive to energy, healthcare to

defense, mature industries have automated their sup-

ply chain to produce goods quickly and efficiently with

high quality and minimized risk . The benefits include

improved performance, profitability, transparency, and

sustainable competitive advantages .

Leading organizations like Toyota learned they could

sustain a competitive advantage by following three

basic principles—use fewer and better suppliers, use

higher quality parts, and track what is used and where .

Toyota has reduced complexity by using only 125

plant suppliers for the Prius . General Motors has 800

for the Volt . General Motors produces 54% of the

content of their vehicles while Toyota produces 27% .

General Motors has 20x the suppliers and yet they

produce half of the content of their vehicles . There-

fore, it’s no surprise that the Volt cost nearly $35,000

and a Prius less than $25,000 . At the time of this

research, Toyota sold 20,000 Prius units a month and

General Motors sold 1,700 Chevy Volts .35

Interestingly, the software development practices

of the majority of organizations today tend to have

more in common with General Motors than you

might think . And in fact, it is far more troubling

because—in a typical software supply chain—devel-

opers don’t have visibility into component quality,

yet each developer can choose any component they

want . Freedom of choice combined with lack of qual-

ity information is a toxic combination . (See appendix,

figure 5 for more information .)

Image 2: Supplier complexity impacts cost and quality, two important factors for competitive differentiation. The same is true
of software. Source: Toyota Supply Chain Management: A Strategic Approach to Toyota’s Renowned System, by Ananth Iyer and
Sridhar Seshadri

Page 26
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

AUTOMATION: HOW TO IMPROVE SOFTWARE SUPPLY CHAINS

Unnecessary—and largely hidden—complexity permeates nearly all software development to-
day. If it continues along the same path, these speed bumps will block further increases in produc-
tivity and the on-time, on-budget delivery of quality software.

The introduction of high-level languages, object-

oriented programming, agile, continuous delivery,

DevOps, and dependency management are all ways

in which software development practices have

responded to problems with scalability, complexity,

and the desire to unlock the next level of efficiency .

Software supply chain complexities, coupled with the

volume and velocity of open source and third-party

components flowing through them, have created

such a requirement . Soon, the industry at large will

begin to demand solutions in response . But the an-

swer is here today: automation .

Mother Teresa said, “If I look at the mass, I will never

act . If I look at the one, I will .” Looking at the mas-

sive volume and velocity of open source and other

artifact consumption can be discouraging and over-

whelming . However, the volume and velocity within

our software supply chains will not diminish—and

without a new approach, the volume of unchecked

quality and integrity of parts being consumed will

continue to build up as technical debt .

Automation in areas of testing, build, and deploy-

ment has provided significant performance benefits .

Likewise, investments in software supply chain au-

tomation have shown markedly improved efficiency

and controlled risk, as the best practices in this report

illustrate . Automation can unleash the potential of

an organization’s development capacity . Rarely is

there such an opportunity to simultaneously increase

speed, efficiency, and quality .

Solutions that facilitate comprehensive software

supply chain automation are poised to usher in the

next wave in development productivity—with gains

on par or even greater than possible with agile, Lean,

and DevOps .

To begin improving your software supply chain, con-

sider these next steps:

1. Create a software bill of materials for one appli-

cation: Visibility into one application can help you

better understand your current component usage .

A number of free and paid services are available to

help you create a software bill of materials within a

few minutes . The bill of materials will help you to

identify the unique component parts used within

your application and the suppliers who contribut-

ed them . These reports list all components used,

and several services also identify component age,

popularity, version numbers, licenses, and known

vulnerabilities .

2. Take inventory within one of your local ware-

houses: Repository managers (a .k .a ., artifact re-

positories) are commonly used by software devel-

opment teams . Components residing in repository

managers can easily be reused across software de-

velopment . If outdated or defective components

reside in the repository manager, they can easily

make their way into multiple applications . Start

by identifying a repository manager in use within

your organization and creating an inventory of the

parts cached there . Some repository managers

Page 27
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

automate this inventory reporting process for you,

listing components, versions, licenses, and security

vulnerabilities .

3. Design approval processes to be frictionless,

scalable, and automated: Manual reviews of

components and suppliers cannot keep pace with

the current volume and velocity of consumption .

Your organization must not only define your pol-

icies for supplier and part selection but also find

practical ways to enforce them without slowing

down development or inadvertently encouraging

workarounds . Policies must be agile enough to

keep pace with modern development . Strive to

automate policy enforcement and minimize drag

on developers .

4. Enable developer decision support: Developers

are primary consumers of components in software

supply chains . They initiate every component

request . Help developers by automating the

availability of information on component versions,

age, popularity, licenses, and known vulnerabilities

within their existing development tools so it is

easy to pick the best components from the start .

By selecting the highest-quality components from

the highest-quality suppliers early, you will im-

prove developer productivity and reduce costs .

5. Ensure visibility and traceability throughout

the software lifecycle: Components can enter

the software development lifecycle at many dif-

ferent places . Requests are initiated by developers

and the tools they use regularly to build, integrate,

and release applications . Since component selec-

tion is not a point-in-time event, continuous mon-

itoring should be used to alert you when new and

unchecked components have entered the supply

chain . Alerts can also tell you when components

used are out-of-date or when new vulnerabilities

have been discovered . Continuous monitoring will

also allow for component traceability, improving

overall mean-time-to-repair defects .

Organizations that have taken control of their software

supply chains have seen tremendous gains in develop-

er productivity, improved quality, and lower risk . This

report has highlighted a number of industry-leading

practices . As your organization embarks on its jour-

ney to supply chain automation, you can use these

examples to establish new performance, quality, and

productivity benchmarks for your organization .

ABOUT SONATYPE

Sonatype helps organizations build better software, even faster . Like a traditional supply chain, software applications
are built by assembling open source and third party components streaming in from a wide variety of public and internal
sources . While re-use is far faster than custom code, the flow of components into and through an organization remains
complex and inefficient . Sonatype’s Nexus platform applies proven supply chain principles to increase speed, efficiency
and quality by optimizing the component supply chain . Sonatype has been on the forefront of creating tools to to
improve developer efficiency and quality since the inception of the Central Repository and Apache Maven in 2001, and
the company continues to serve as the steward of the Central Repository serving 17 .2 Billion component download
requests in 2014 alone . Sonatype is privately held with investments from New Enterprise Associates (NEA), Accel Partners,
Bay Partners, Hummer Winblad Venture Partners and Morgenthaler Ventures . Visit: www .sonatype .com

Page 28
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

APPENDIX

Figure 1: The Volume and Size of the Global Software Supply Chain based on data compiled from the Central Repository.

This chart provides visibility to the number of suppliers, parts, and warehouses used across the software supply chain, specific
to Java open source components. The volume of download requests, including those with known vulnerabilities, has been
noted in the chart. The chart represents data analyzed from the Central Repository (www.sonatype.org) from calendar year
2014.

Supply Chain Volumes Measured in 2014 Software Supply Chain Translation

Parts Consumed 17,200,000,000 Download requests of open source components managed in 2014

Suppliers >105,000 The number of open source projects supplying new components as
measured by Group-Artifact, as of year-end 2014

Total Parts Available >834,000 Total number of parts (Group-Artifact-Version) when considering all
versions, as of year-end 2014

Central Warehouses >100 Estimated number of large, public open source repositories

Local Warehouses >60,000 Repository managers caching and hosting open source and
proprietary components, as of February 2015

Manufacturers >106,000 In 2014, more than 106,000 software development organizations
downloaded open source components from the Central Repository

Average number of unique part
versions ordered (for top 100 parts
by order volume)

27 Sonatype assessed the top 100 most popular component downloads
across 29 large companies in the financial services and technology
industry. This is the average number of versions of open source
component parts consumed in 2014 (unique Java/Maven parts are
identified by Group-Artifact-Version)

Number of parts with known
defects residing in the Central
Repository

>51,000 Open source components with known security vulnerabilities housed
with the Central Repository. 51,000 (6.1%) components with known
vulnerabilities resided in the Central Repository, as of year-end 2014

Percent of parts with known
defects delivered in 2014

6.22% Total percentage of downloads from the Central Repository that
included components with known security vulnerabilities. Roughly 1
in 16 downloads included a known vulnerability

Percent of components with known
restrictive licenses in the central
warehouse

34.02% Total percentage of components residing in the Central Repository
that include a type of GPL open source license. 283,800
components had a GPL type of license, as of year-end 2014

Page 29
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Figure 2: Target Benchmarks for Software Supply Chain Best Practices - Quality Control

Sonatype research and analysis has revealed notable differences in quality control practices and policies across organizations.
While the best practice would be to eliminate all use of known vulnerable or poor-quality components, Sonatype recognizes
that as an end goal. Industry guidelines developed by OWASP, FS-ISAC, and PCI recommend not using components with known
vulnerabilities in applications. While a number of organizations have made significant progress on this front, Sonatype decided
to highlight some of the better examples of policies and practices, understanding that we have significant room to improve
across all industries.

Supply Chain
Behaviors

Observations of Better
Software Supply Chain
Behaviors

Current Software Supply Chain Behaviors

Quality Control -
versioning

The best mandate using
no more than 1 or 2
versions per component

A global Internet search and advertising company is known to mandate the use of one version of
each component used in their software development practice.
Source: Presentations by Gene Kim and Josh Corman at RSA Conference, April 2015.

By comparison, some companies analyzed had consumed an average of 27 versions of a single
component in 2014. These 27 versions were noted among the top 100 components downloaded
by those companies in 2014.
Source: Analysis of data from the Central Repository, April 2014 - March 2015

Quality Control -
policies

47% of large companies
strictly enforce quality
through policies

In firms with 500 or more developers, 73% had a policies in place to support selection of high
quality (functionality, version, age, security, license) software components. Within these same
firms, 47% of firms strictly enforced that policy.
By comparison, 57% of all companies have a policy in place, but 75% claim to not strictly enforce it.
Source: 2014 Open Source Development and Application Security Survey

Quality Control - track
and trace

67% of companies with
policies in place track
and trace all components
in use

67% of companies with an open source policy in place track and trace all components and their
dependencies used in an application. In companies with 500+ developers, the percentage
dropped to 49%.
Source: 2014 Open Source Development and Application Security Survey

By comparison, 60% of organizations have loose or no controls over component versions,
including dependencies, used in their environments. That is, they claim to have no software bill
of materials or an incomplete software bill of materials.
Source: 2014 Open Source Development and Application Security Survey

Quality Control -
known defects

3.25% of components
downloaded / sourced
included defects

One company sourcing more than 400,000 components from the Central Repository in 2014,
only sourced 3.25% with known security defects (elective risk).
By comparison, cross-industry rates reached 6.22% of overall downloads. One company that
sourced over 24,000 parts reached a known defect volume about 14%. It may only take one
CVE to have a breach or one misused GPL to have a legal settlement.
Sources: Analysis of 2014 downloads from the Central Repository. Analysis included evaluation
of the top 500 organizations downloading components in 2014, as measure by volume.
Sonatype also analyzed 2014 download data from 29 large financial services and technology
companies.

Quality Control -
known defects over
time

When downloading
components with known
CVEs, 52% included
vulnerabilities dated
2013 or older.

Companies are electively sourcing components with known security defects. When analyzing
the quality and age of these defects, the best performer in our analysis of 29 large financial and
technology firms demonstrated 52% of vulnerable downloaded components had CVEs dated
2013 or older.
Source: Analysis of 2014 download data from 29 large financial services and technology
companies

By comparison, the cross-industry average of CVE downloads dated 2013 or older was
77%. Components with CVEs dated 2010 or older accounted for 17% of known vulnerability
downloads.
Source: Analysis of downloads from the Central Repository in 2014.

Page 30
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Figure 3: Target Benchmarks for Software Supply Chain Practices - Efficient Distribution

Sonatype research and analysis has revealed notable differences in the sourcing of open source components by development
teams. These sourcing practices sometimes represent efficient distribution of components across the software supply chain by
utilizing local warehouses (i.e., repository managers). Inefficient sourcing practices would bypass the local repository manager
where the requested component was stored and go directly to the distant public repository (i.e., central warehouse) for retrieval
of component parts.

Supply Chain
Behaviors

Observations of Better
Software Supply Chain
Behaviors

Current Software Supply Chain Behaviors

Efficient Distribution -
via local warehouse

The best achieve 99%
of components sourced
from local repositories

Of the top 500 organizations (by volume) downloading components from the Central Repository
in 2014, the best source 99% of their components through a repository manager to ensure faster,
more reliable builds. By the time we reach the 30th ranked downloader to repository managers
(by volume), the figure drops to 25% of components sourced from repository managers.
By comparison, the cross-industry average is 4.76% of components sourced from repository
managers.
Source: Analysis of 2014 downloads from the Central Repository. Analysis included evaluation of
the top 500 organizations downloading components in 2014 as measure by volume.

Figure 4: Analysis of Components Used within Applications

This chart provides a summary of more than 1,500 applications analyzed by software developers using Sonatype’s Application
Health Check (AHC), a community service offering available at no cost. The AHC details component popularity, age, license
types, and known security vulnerabilities as part of providing a software bill of materials.

Supply Chain Volumes Measured in
2014

Software Supply Chain Translation

Average number of
parts assembled into
a finished product

106 Average number of open source components identified in an application

Number of known
critical or severe
security vulnerabilities
in a typical application

24 Average number of open source components identified in an application that include known
security vulnerabilities. (Note: if considering Java Runtime Environments or Operating System
level defects, the average might be much higher)

Number of known
restrictive license in a
typical application

9 Average number of open source components identified with restrictive GPL license types, per
application

Page 31
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Figure 5: Multiple Versions of Parts Often Downloaded by the Largest Development Teams

Sonatype analyzed the 2014 component downloads of 29 large companies in the financial services and technology industry.
Those companies downloaded different volumes ranging from 10,000 to 900,000 components. Sonatype grouped the
organizations in volume download bands to compare the number of orders, suppliers, and the variety of parts used across their
software supply chains.

Orders Suppliers Parts Variety

April ’14 - April ’15
Software Component
Downloads19

Orders (Downloads) Suppliers (Artifact) n version of Parts (Version) Average versions across top 100
component downloads

Range: 500K - 900K 622,517 7,927 27,698 35

Range: 150K - 499K 259,995 16,602 30,493 34

Range: 40K - 149K 58,350 3,951 11,457 23

Range: 10K - 39K 22,165 1,923 4,810 16

Average 240,757 7,601 18,614 27

Figure 6: Volume of Defective Parts Used

Sonatype analyzed the 2014 component downloads of 29 large companies in the financial services and technology industry.
Those companies downloaded different volumes ranging from 10,000 to 900,000 components. We grouped the organizations
in volume download bands to compare the number defects parts (i.e., components with known vulnerabilities) downloaded
from the Central Repository. We also analyzed the age of CVE downloads.

Orders Quality Control

Download (Range) Average
Component
Downloads (Orders)

Average Downloads
with Known
Vulnerabilities (Defects)

Percentage of
Known Defective
Parts

Component
Downloads with
Known Defects Older
than 2013

Percentage of CVE
Downloads with
Defects Older than
2013

Range: 500K -
900K

622,517 39,622 6.42% 27,621 69.92%

Range: 150K -
499K

259,995 14,514 5.83% 9,634 66.75%

Range: 40K - 149K 58,350 5,328 9,43% 3,184 59.01%

Range: 10K - 39K 22,165 1,885 8.41% 1,265 69.44%

Average 240,757 15,337 7.52% 10,426 66.28%

Page 32
2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous”

Figure 7: Comparison of Impact of Supply Chain Complexity on Prius versus Volt

Other industries have reduced supply chain complexity by using the highest quality parts from fewer and better quality
suppliers. One example highlighted in the book “Toyota Supply Chain Management” by Ananth Iyer and Sridhar Seshadri reveals
the advantages Toyota’s Prius recognized over GM’s Chevy Volt.

Advantage Toyota Prius Chevy Volt

Unit Cost 61% $24,200 $34,345

Units Sold 13x 23,294 1,788

In-House Production 50% 27% 54%

Plant Suppliers 16%
(10x per)

125 800

Firm-Wide Suppliers 4% 224 5,500

Figure 8: Efficient Sourcing Practices By Manufacturers

Sonatype analyzed the 2014 component downloads of 29 large companies in the financial services and technology industry.
Those companies downloaded different volumes ranging from 10,000 to 900,000 components. We grouped the organizations
in volume download bands to compare the volume of components being downloaded by repository managers. Component
downloads by a repository manager represent a more efficient practice of sourcing by software development organizations.
Sonatype also analyzed the number of defective components being downloaded to these repository managers.

Download (range) Volume of downloads
by repository
managers

% of total downloads
requested by repository
managers

Volume of downloads with
known defects (CVEs) by
repository managers

% of total downloads with
known defects (CVEs)
requested by repository
managers

Range: 500K -
900K

63,353 11.25% 4,556 6.52%

Range: 150K -
499K

33,977 14.28% 2,213 6.17%

Range: 40K - 149K 19,061 28.31% 1,644 10.26%

Range: 10K - 39K 2,397 12.17% 192 6.19%

Averages 29,697 16.50% 2,151 7.28%

Footnotes:

1. Sonatype research including Application Health Checks and Open Source surveys, 2013 – 2014.

2. Openhub, https://www.openhub.net

3. IDC, http://www.idc.com/getdoc.jsp?containerId=prUS24529613

4. Sonatype analysis of the Central Repository for 2014

5. Sonatype analysis of the Central Repository for 2014. Statistics are updated daily at https://search.maven.org/#stats

6. Sonatype analysis of the Central Repository for 2014

7. Sonatype, https://search.maven.org/#stats

8. Sonatype analysis of the Central Repository for 2014

9. Sonatype analysis of the Central Repository for 2014

10. Almost Too Big to Fail, https://www.usenix.org/system/files/login/articles/15_geer_0.pdf

11. SherWeb, http://www.sherweb.com/blog/5-pivotal-open-source-lawsuits/

12. Sonatype analysis of the Central Repository for 2014

13. Sonatype analysis of the Central Repository for 2014

14. National Vulnerability Database, https://nvd.nist.gov

15. Almost Too Big to Fail, https://www.usenix.org/system/files/login/articles/15_geer_0.pdf

16. Sonatype analysis of the Central Repository for 2014. The original article provided stats for calendar 2013. The stats have been updated in this report

to reflect calendar 2014.

17. Sonatype analysis of the Central Repository for 2014. The original article provided stats for calendar 2013. The stats have been updated in this report

to reflect calendar 2014.

18. Sonatype analysis of the Central Repository for 2014

19. Sonatype analysis of 29 large financial services and technology sector companies and their Central Repository activity, April 2014 – March 2015.

20. Sonatype, Open Source Development and Application Security Survey 2014, bit.ly/2014OSS_survey

21. Sonatype analysis of Open Source Development and Application Security Survey 2014 results.

22. Sonatype analysis of 29 large financial services and technology sector companies and their Central Repository activity, April 2014 – March 2015.

23. Rugged DevOps: Going Even Faster with Software Supply Chains, presentation by Josh Corman and Gene Kim, RSA Conference, April 2015.

24. Rugged DevOps: Going Even Faster with Software Supply Chains, presentation by Josh Corman and Gene Kim, RSA Conference, April 2015.

25. Sonatype, 2014 analysis of Application Health Check results.

26. Sonatype, 2014 analysis of Application Health Check results.

27. Veracode, http://www.veracode.com/open-source-and-third-party-components-embed-24-known-vulnerabilities-every-web-application-average

28. Sonatype, Open Source Development and Application Security Survey 2014, bit.ly/2014OSS_survey

29. Wikipedia

30. Wikipedia

31. Wikipedia

32. Open Web Application Security Project, https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities

33. FS-ISAC, http://bit.ly/fsisac_knownvulnerability

34. U.S. Representative Royce, http://royce.house.gov/news/documentsingle.aspx?DocumentID=397589

35. Toyota Supply Chain Management: A Strategic Approach to Toyota’s Renowned System, by Ananth Iyer and Sridhar Seshadri

Sonatype Inc. • 8161 Maple Lawn Drive, Suite 250 • Fulton, MD 20759 • 1.877.866.2836 • www.sonatype.com
2015. Sonatype Inc. All Rights Reserved.

Page 33

