


Nexus Lifecycle
Empower teams and infuse 
every phase of your pipeline 
with precise component 
intelligence

Nexus Repository
Organize and store parts in a 
universal repository and share 
them across the DevOps pipeline

Nexus Intelligence
Precise & polyglot intelligence, 
curated by world class experts, 
fuels the Nexus platform

Nexus Intelligence
Precise & polyglot intelligence, 
curated by world class experts, 
fuels the Nexus platform

Nexus 
Intelligence

Develop  Build Package Test Deploy Operate Build Test Deploy OperatePackage
Nexus Firewall

Nexus Lifecycle

Nexus Repository

Nexus Auditor

Release Faster

Control Risk

Nexus Auditor
Examine the quality of open 
source components within 
production applications 

Nexus Firewall
Vet parts early and stops 
defective components from 
entering your DevOps supply 
chain 

Learn more at www.sonatype.com

The best businesses rely on Sonatype to automate 
open source governance early, everywhere, 

and at scale in support of their DevSecOps practices.



Epic Failures in 
DevSecOps

Volume 1



Copyright © 2018-2019 DevSecOps Days Press

All rights reserved. No part of this publication may be reproduced, 
distributed, or transmitted in any form or by any means, including 
photocopying, recording or other electronic or mechanical meth-
ods, without the prior written permission of the publisher, except in 
the case of brief quotations embodied in critical reviews and certain 
other noncommercial uses permitted by copyright law. For permis-
sion requests, email the publisher at info@devsecopsdays.com.

ISBN: 9781728806990
Imprint: DevSecOps Days Press

Publisher:
DevSecOps Days Press
48 Wall Street, 5th Floor
New York, NY 10005

www.devsecopsdays.com



Epic Failures in 
DevSecOps

Volume 1

Aubrey Stearn
Caroline Wong

Chetan Conikee
Chris Robert s

DJ Schleen
Edwin Kwan
Fabian Lim

Stefan Streichsbier

Mark Miller, Editor



“The stories presented here are not a roadmap. What they do is 
acknowledge failure as a part of the knowledge base of the DevSecOps 
Community.” — Mark Miller, October 2018



Table of Content

Introduction  ............................................................................ ix

Chapter 1: We Are ALL Special Snowfl akes .................................. 1

Chapter 2:  Th e Security Person Who Is Not Invited 
Into the Room .......................................................... 31

Chapter 3: Th e Problem with Success ......................................... 43

Chapter 4: Th e Table of the Burning Programme ....................... 61

Chapter 5: Th reat Modelling – A Disaster .................................. 85

Chapter 6: Red Team the Culture ............................................. 111

Chapter 7: Unicorn Rodeo ....................................................... 127

Chapter 8:  Strategic Asymmetry – Leveling the Playing Field 
between Defenders and Adversaries ......................... 143

Conclusion ............................................................................ 159

Acknowledgments .................................................................. 163





 Introduction
October 2018

We learn more from failures than we do from successes. 
When something goes as expected, we use that process 
as a mental template for future projects. Success actu-

ally stunts the learning process because we think we have established 
a successful pattern, even after just one instance of success. It is a 
fl awed confi rmation that “Th is is the correct way to do it”, which has 
a tendency to morph into “Th is is the only way to do it.”

Real learning comes through crisis.

If something goes wrong, horribly wrong, we have to scramble, 
experiment, hack, scream and taze our way through the process. Our 
minds fl ail for new ideas, are more willing to experiment, are more 
open to external input when we’re in crisis mode.

 Th e Genesis of an Idea

Th at’s where the idea for this book came from. When I was in Sin-
gapore for DevSecOps Days 2018, Edwin Kwan, Stefan Streichsbier 
and DJ Schleen were swapping war stories over a couple of beers. 
Th e conclusion of their evening of telling tales was the desire to fi nd 
a way to get those stories out to the community. Th ey spoke with me 
about putting together a team of authors who would tell their own 
stories in the hope of helping the DevSecOps Community under-
stand that failure is an option.



x Epic Failures in DevSecOps

Yes. You read that right. Failure is an option.

Failure is part of the process of making the cultural and technological 
transformation that needs to happen in order to keep innovating. 
It is part of the journey to DevSecOps. The stories presented here 
aren’t a roadmap. What they do is acknowledge failure as a part of 
the knowledge base of the DevSecOps Community.

What to Expect from this Book

This is the first in a series of books tracking changes and discoveries 
within the DevSecOps Community. The stories are by people who 
have been sloshing around in the swamps of software development 
for years, figuring out how things work, and most importantly, why 
things didn’t work.

Chris Roberts starts us off with how the industry as a whole has 
failed us when it comes to software security. DJ Schleen, Edwin 
Kwan, Aubrey Stearn, Fabian Lim and Stefan Streichsbier provide 
a practitioner’s view of being up to their waists in the muck of an 
epic failure. Caroline Wong and Chetan Conikee bring another view, 
peering into the murky waters of DevSecOps from a management 
perspective.

Each chapter follows a specific format:

• Overview, what were you trying to accomplish
• What went wrong, how bad was it
• How did the team try to resolve the issue
• What was the final outcome
• What were the lessons learned

Following this type of format, we should be able to create a series of 
stories, surfacing patterns we as a community can use to safely push 
the boundaries of software development.



Introduction xi

Invitation to Tell Your Story

The days of stand-alone security teams isolated from the real process 
of development are coming to an end. Paraphrasing Caroline Wong, 
“Security needs to be invited to the party, not perceived as a goon 
standing at the front door denying admission”. With DevSecOps, 
security is now part of the team.

After reading these stories, we hope you will realize you are not alone 
in your journey. Not only are you not alone, there are early adopters 
who have gone before you, not exactly “hacking a trail through the 
swamp”, but at least marking the booby traps, putting flags next to 
the quick-sand pits and holding up a ‘Dragons be here’ sign at per-
ilous cave openings.

On DevSecOpsDays.com, we’ll be expanding the ideas and concepts 
talked about in this book. We look forward to your participation in 
the community, whether as organizers of regional DevSecOps Days 
events, as article contributors to DevSecOpsDays.com or as an author 
of your own Epic Failure on your journey through DevSecOps.

What would your warning sign say? We ask you to join our journey 
as we continue to learn from your Epic Failures.

Mark Miller
Founder and Editor in Chief, DevSecOpsDays.com
Co-Founder, All Day DevOps
Senior Storyteller, Sonatype



xii Epic Failures in DevSecOps



Chapter 1

 We Are ALL Special 
Snowfl akes

by Chris Roberts



2 Epic Failures in DevSecOps



Chapter 1 – We Are All Special Snowflakes 3

Chapter 1
We Are ALL Special Snowflakes

Twenty-five years ago we, the network team and the various 
information security teams (in their infancy) walked into 
their CEOs’ and CFOs’ offices and proudly stated, “We need 

a firewall to protect us!” We started a chain of events that have led us 
to today’s rather messy situation. For those 25 years or more we have 
continued to walk into the leadership’s corner office and state that 
the next greatest thing will fix all the problems, secure all the things. 
We’ve done it by stating that the general reason we have to do this is 
because it’s the users’ fault, or the developers’ fault, or the engineers’ 
fault. Heck at one point I think I even blamed my grandmother for 
breaking security on the Internet.

For many years, we have continued to look at others as being cul-
pable. We were special; we were the new warriors; the fighters of all 
things bad in the world; and, we were the only ones protecting the 
company against the perils of the modern era. Recently however, a 
growing number of folks have joined their voices together in earnest 
and started to rebel against the industry. Questions over tactics, over 
media portrayals and over the spread of fear, uncertainty and doubt 
throughout industry, in an effort to further the realm of security, 
are now being met with voices from within. Quite simply the tide 
is turning and our own industry is starting to introspectively look at 
what it’s become and how it has to change to actually protect the very 
charges (companies and individuals) it has forgotten about, and to 
address all that is wrong within InfoSec/Cyber.

Fundamentally, we have realized how wrong we were and, unfortu-
nately, how very wrong we still are. And, how much we have to learn 
and, more importantly, how quickly we have to learn it.

*Snowflake: an individual with an inflated sense of uniqueness, or an 
unwarranted sense of entitlement. (Wikipedia….)



4 Epic Failures in DevSecOps

A Closer Look At That History:

The primordial ooze of technology

Around 500 BCE, the abacus came into existence…and remained 
the definitive form of calculation until the middle of the 17th cen-
tury. Think about that, over 2000 years with the same piece of tech-
nology in use, working effectively and not a single call center, vendor 
support network or venture capitalist in place to mess with it. The 
abacus saw us through some amazing changes in the world around 
us and, eventually, it was replaced by Blaise Pascal’s mechanical cal-
culator. The Frenchman’s invention lasted 30 years until a German, 
Gottfried Wilhelm Leibniz, improved drastically upon the technol-
ogy and gave us our first glimpse of what we know now as memory. 
Those of you who are paying attention during this quick history les-
son will recognize our intrepid German mathematician/philosopher 
as the very same individual who presented the world with Binary.

One hundred years later (give or take a few) an Englishman, George 
Boole, took the whole concept of binary, threw it at a chalkboard and 
walked away a while later with an entire branch of mathematics that 
(thankfully) survives to this very day in the world we now have to 
untangle…Boolean algebra. The combination of binary and Boolean 
allows our modern systems to make sense, and simple decisions by 
comparing strings of ones and zeros.

So, at this point we have calculators, rather fantastic ones, yet still 
devices that require human input, and human hands at each stage. 
So, we’ve not (by definition) reached the age of computing which is 
where a machine is able to operate a program, or series of instruc-
tions, autonomously without the aid of a human. For this we have 
to look at the “father of computing” (no, not Al Gore) but Charles 
Babbage, and arguably the first “mother of computing” or computer 
programmer Englishwoman Augusta Ada King, the Countess of 
Lovelace (or Ada Lovelace). Between Babbage’s innovative ways of 
looking at inputs, memory, processing, and outputs, and Lovelace’s 
algorithms (Notes), as well as her forward thinking concepts about 



Chapter 1 – We Are All Special Snowflakes 5

how these systems could evolve past simply number crunching, we 
see the start of the age of computers.

Now, we both fast forward to the 1880 and take a leaf out of the 1700s 
and combine the art of punched card with the technology of the era--the 
tabulator. Herman Hollerith, a statistician managed to take the census 
from a 7.5 year task to one of tallying it in six weeks, and full scale analy-
sis in 2.5 years. The Tabulating Machine Corporation was set up (1896) 
which then changed names to the Computing Tabulating Recorder, and 
then to one that’s familiar to us ALL in this industry, IBM.

The early days when we learned to talk to the 
technology

At this point, we had the machines, we’d worked out how to use them 
for some basic functionality, but we knew they could do more. Next, we 
had to work out how. For that we turn to another amazing figure in our 
history, Alan Turing, whom we can thank for the groundbreaking work 
on the theories of how computers process information. Turing is also 
known for several other key moments in our early history, that of the 
code-breaking machinery, the Enigma, and of the Turing test which is a 
method to see if a computer can be considered intelligent by measuring 
its ability to sustain a plausible conversation with a real human.

The time of Women (and why didn’t we keep it 
that way for heaven’s sakes!)

As we’ve already discussed, Ada Lovelace was the first programmer. 
Following her, we had the Pickering Harem, the rather ungracious 
name given to the female team that worked at the Harvard Obser-
vatory with Pickering processing astronomical data sets. The logic at 
the time was that work was considered clerical and the women could 
be hired at a fraction of the cost of a comparable male (incredibly, 
this battle is still being fought over 140 year later.)

The concept of the “human computer” harks back to these days and 
is often used as a reference as we move through history (NACA’s com-
puter pool being the 1930/40’s version). Then we move to the 1940s 



6 Epic Failures in DevSecOps

and arguably the Grandmother of COBOL, Grace Hopper. She was 
the first person to develop and create a compiler. The simple logic being 
her belief that a programming language base on English was possible 
and that converting English to machine code, to be understood and 
executed by computers should be possible… Her achievements and her 
foundations led to the Mk1, the UNIVAC and host of other systems 
that have pioneered some of these countries greatest moments. While 
talking about the early days, it is well worth remembering the pioneer-
ing mathematicians, and their teachers and trainers who worked on the 
ENIAC computer: Adele Goldstine, Marlyn Meltzer, Betty Holberton, 
Kathleen Antonelli, Ruth Teitelbaum, Jean Bartik, and Frances Spence.

Fast-forward to the late 50s and early 60s and we run smack into 
the real-life history behind the movie, Hidden Figures. Dorothy 
Vaughan, Mary Jackson and Katherine Johnson among others who 
were literally the brains behind the NACA (later NASA) work at that 
time and went head-to-head with the likes of the IBM 7090s.

It’s a man’s world

Then we hit the 80s and computer science became “cool.” (Let’s face 
it, we were still nerds and geeks.) The computing focus started to 
shift towards it being a male profession. In part, we have to blame 
the advertisers, the game manufacturers, and the early PC develop-
ers--all of them targeted the male, the boys, and the companies that 
for the most part were run by “male geniuses”.  Within the college 
arena, computer science ended up in its own space, separated from 
the other sciences, humanities and other integrated areas, thereby 
reinforcing that separation from the rest of the baseline subjects that 
would typically attract a much more diverse crowd.

So, we have games for boys, computers being sold to the teenage boy, 
and advertising and college promotion aimed at the boys, and the 
whole field was having a massive influx of students, most of whom 
grew up with computers, who thought computing would make a 
good future. Not an ideal situation for fostering a diverse set of ide-
als, especially when there was a movement among some folks to treat 
knowledge as privilege or power, and should not be readily shared or 
used for the good of many.



Chapter 1 – We Are All Special Snowflakes 7

The mainframe, we should never have let it out 
of the room

We had it all nicely under control, a room, a green screen and a 
person guarding the door--sometimes with a gun.  You either got in, 
or got shot--simple binary response. The problem was the PC revo-
lution was going nuts.  Intel, Wozniak, Jobs, Kildall and Gates were 
all focused on bringing the computer to every home, every office and 
eventually moving the data from that monolith in the room to the 
desktop. For a while they co-existed, (remember the 3270 emula-
tors and all the fun setting those up?) but eventually the PC market 
spawned the file server, the database server, and from that moment 
on the spread of data exploded.

We were doing so well and then--and this is the only time I’ll say 
this--Apple ruined it all.

The distribution, time for tokens, and green 
screens

Token ring, MAU’s CAU’s (Mows and Cows) 4, 16, then this 
thing called Ethernet. In the middle was Banyan Vines and a host 
of other things. This was the time of  “cable and re-cable”-- and 
do it all again with fiber-- oh, and now--Ethernet! The continual 
cracking open of the user’s computer case for a new card, followed 
by a floppy drive install of drivers and you’d better hope you had 
the right settings otherwise the whole bloody thing fell around 
your ears.

Between changing out cards, computers, math coprocessors and 
installing WYSIWYG on the early spreadsheets, these were the days 
when we touted our knowledge, our experience and our absolute 
thirst to work out what was going on, how it all worked, and what 
we had to plan for next.

This was when we, the IT folks, should have been working much 
closer with businesses to understand and help them work out how 
they could and would use the technology. We didn’t do a good 
enough job to see how the transition from the mainframe to the 



8 Epic Failures in DevSecOps

client server world would affect companies; we spent too long chas-
ing the latest technology and not enough time listening to the very 
businesses we were beholden to.

The emergence of the giants, and the time we 
ALL wish we’d bought stock

This is the time we should have taken things seriously, taken a long 
look at the future and realized this was the time we had to make the 
necessary changes. We should have seen the shift in momentum and 
the emergence of the small companies with money behind them that 
took on and won against the giants.

We all kick ourselves for not buying Microsoft stock, or any of the 
other giants, that emerged in this era.

From BBS to Internet, the shift in momentum 
from hoarding data to seeing it everywhere

How many of us remember building, maintaining and using the 
banks of modems in various closets all across the planet? The boards, 
the early days of being able to share information that’s turned into 
all the data everywhere. How many of us, back then, would have had 
the vision: that what we had, would eventually turn into what we 
now see all around us?

The proliferation of information is both fascinating and daunt-
ing. At least back in the early days you could, if you needed to, 
simply pull the plug on the board and a large chunk of things 
would go off line. These days that concept of being able to turn 
it all off has long since disappeared. We talk about being able to 
reset it should the worst happen, but at this point technology 
is so integrated into almost every part of our life that the nega-
tive consequences arguably outweigh any benefit. There’s logic 
to that being part of the reason we simply accept the inevitable 
when it comes to the Internet and that identity theft, crime, and 
the complete lack of privacy is simply the price of pay to play. 



Chapter 1 – We Are All Special Snowflakes 9

I do not agree, I cannot agree and refuse to accept the current 
thinking. Quite simply, this indifference is something that has 
to change.

Apple’s back and what the hell did they do 
with the “phone”

11 years ago, the iPhone was released and it quite simply changed the 
landscape, tore up the smartphone book and really kicked the mobile 
revolution into high gear. How revolutionary and how much did we 
mess up when it comes to being able to help this revolution be a safer 
and secure one? Let’s explore:

First, the iPhone was an Internet device.  It was a phone, yes, but 
when you look at the growth of data vs. voice traffic in the last 11 
years, it quite simply moved the Internet from the desktop/laptop 
right into our hands all the time.

Second, we all became both consumers and proliferators of informa-
tion. Back in 2011 it was estimated 400 billion digital photos were 
taken, fast forward to 2017 and the statistics are sitting at 1.2 trillion 
photos. We are simply moving everything we see, do and interact 
with into these devices that are sitting in our hands. Unprotected.

Third, we changed how we purchase software, applications and ser-
vices. We use to spend time pondering the difference between all the 
separate software neatly stacked on the shelves. We pored through 
the PC magazine reviews, talked to the vendors and basically did 
enough due diligence to assume we’d made the best choice possible. 
Now we look at our $11 billion app-store shopping habits. Between 
the two main app stores out there, there are 6 million apps to choose 
from. Our diligence these days is limited to which one looks good, 
and answers these questions: Is it free? Does it offer in-app purchases? 
Can we get rid of the adverts? And will it integrate with whatever 
password manager we’re using on the phone? We sometimes check 
reviews; however, we rarely care about whose hands are on the key-
board or what other data, access or “integration” they need to have 
with our device. Privacy and safety has taken a back seat to conve-
nience and we, the IT/InfoSec/DevSecOps folks, have done little to 



10 Epic Failures in DevSecOps

help consumers understand the risks, nor helped mitigate those risks, 
until it’s too late.

There are heaps more examples of how the iPhone has reshaped the 
world around us, and how we have adapted (not always in a positive 
manner) to its introduction into our lives. We have the computing 
power of a mainframe in our pockets, with the ability to change our 
lives in so many positive ways, yet we continue to fail to understand 
how best to use that.  The introduction of the iPhone and its sub-
sequent impact on the safety and security of how we interact with 
technology really drives home Lord Acton’s advice in the mid-1800s 
that “absolute power corrupts absolutely”.

All your technology, all the time, everywhere, 
with everyone

Somewhere in the middle of the mobile revolution, we arguably 
lost the battle. We were already fighting Bring Your Own Device 
(BYOD) and as IT and InfoSec, we threw up our hands, declared all 
mobile technology banished from our realms.  And, we were sum-
marily ignored by the users, businesses and the world in general. The 
mobile revolution moved the IT/InfoSec/DevSecOps teams from 
being the drivers into being the also-rans. Now, we had to adapt 
faster than we’d ever had to in prior years.  We had to help a business 
understand how this technology would be used, and at the same 
time, deal with the implications of securing what was rapidly becom-
ing a vanishing perimeter. There’s an argument that when the laptop 
arrived we lost any vestiges of a perimeter, but for most of us who 
remember those early heavyweights they were about as “portable” as 
a desktop and as useful as a boat anchor. Because of those reasons, 
we still had some elements of perimeter because folks simply didn’t 
want to have to deal with them. When the iPhone and subsequent 
smartphones arrived any perimeter quickly vanished.



Chapter 1 – We Are All Special Snowflakes 11

Where Are We Today?

Let’s take a quick, high-level look and break it 
down piece by piece

In 2017, across the whole information security industry we spent the 
best part of $90 billion; some of that was for the ongoing/running 
of existing systems; some of that was technical debt; and a chunk of 
it was for things that folks saw at conferences and were persuaded 
they needed to buy and integrate into their environments. At the 
same time we, as an industry, the protectors of our charges, managed 
to lose “somewhere” between 2 and 8 billion records--that’s social 
security numbers, healthcare records, privacy information, banking/
financial data and anything else that can be used against people to 
extort them.

So, how come we’ve managed to spend so much money and have 
so little to show for it? Why are we still looking around for the 
easy button and why the heck are we on track to spend even more 
in the next few years. All this as the criminal statistics are even 
more staggering. There’s a consensus that our industry will pro-
vide continual fertile ground for criminal activities to the global 
tune of $6 trillion in anticipated damages in 2021, up from $3 
trillion a few years ago.

Let’s break it down into some quick manageable chunks and see what 
we can make of it:

Our Fragmentation

Our industry has fragmented, not just in the early days of IT when 
we split into networking, database, desktop, server and a small gath-
ering of other areas (developers, etc.), but when information security 
overlaid itself onto each of the IT roles and exploded from there. 
We’ve been adding new and interesting titles each time a technology 
or buzzword is released. Today, we have hundreds of roles just within 
security.



12 Epic Failures in DevSecOps

Then, we overlaid the word “cyber” onto everything and that just 
confused everyone.

Then we formed chapters for ISSA, ISACA, ISC2, OWASP and host 
of other things.

And then we decided to have conferences, and those conferences 
spawned other conferences, which spawned “annoy the confer-
ence” conferences. Now we have a new one every week--which is 
good because it spreads the word—but bad because the word itself 
is too spread, out and diluted to the point of noise at times. And 
nobody really knows who to listen to, why to listen to them, or 
what logic to use to understand the value of what they are saying. 
So, we’ve taken a core group, fragmented it, expanded it, but have 
failed to retain any strong bonds between each of the fragments or 
any of the expansion kits.

Led by money not protection

“I’ve got an idea!” Both the greatest words to hear and the most fright-
ening to those of us who have scars from being in the industry a 
while. Let me explain.

Your idea might be the next greatest, and safest mousetrap, but you 
have to develop it, market it, support it and critically tell everyone 
that it is the next best mousetrap. All this takes time--and critically 
money. So you borrow some money, friends, family and the kids 
down the street all chip in. You are beholden to them, so you don’t 
sleep and you get the prototype out. Folks like it but you need to 
get to the market first, you need market share, you need to convince 
people that this is the mousetrap they need.

So, you borrow more money--this time from an institution and this 
time they want to make sure you are doing it right (their way, or 
with their help)--so they take some of your company and they help. 
Sometimes this is good, and sometimes this is a challenge, depen-
dent upon who’s doing the leading and who’s doing the following. 
Meanwhile you need to still build the Mark 2 version and market 



Chapter 1 – We Are All Special Snowflakes 13

it, and make it safe and secure, and you need to do it yesterday! 
And you still need to do the 101 other things necessary to run a 
business.

So, you go round in circles, possibly borrowing some more 
money from more people who want to help, and now you are 
beholden; you must make sure that those who have invested in 
you and your mousetrap get a good return. You put time and 
effort into making sure it’s marketed, it’s sold and it’s “out there” 
and less time on the real reason for starting the whole process in 
the first place. The mousetrap has become simply a vehicle for 
making money, and not for protecting the very charges you set 
out to look after.

The illusion of red teams

“I want to be a penetration tester!” Congratulations! Join the queue 
and line up to break one of the 20-25 billion devices that will be 
in service by 2020/2021. How about we stop breaking things and 
spend more time fixing them? We’re really good at coming in, break-
ing it and then wandering off all happy, full of ourselves that we’ve 
once again shown the developers, network types, systems folks or 
users that we can continue to break whatever’s put in front of us. 
We’ll even give you a nifty report (hopefully something more than a 
rebranded Nessus PDF.)

So, what’s the solution? How about this approach: “I would like to 
work on defending and ensuring the integrity, safety and security of 
systems.” This is far more collaborative with the entire organization, 
much more valuable--and given where technology is heading, and 
may result in much better long-term prospects.

Red is necessary. We need to be able to think as the attackers, to be 
able to maintain the security within the organization by continually 
testing the controls and technologies and the humans that protect 
it, but that team has to work in conjunction with the blue team, the 
internal defensive teams. Collaborative testing that engages on all 
levels has to be considered for the future.



14 Epic Failures in DevSecOps

Fool me once, shame on you, fool me twice 
shame on me: the plight of the auditor

I have empathy with auditors, quite a lot of it. I see how companies 
treat them, how they slap themselves on the back, congratulating 
each other that they fooled the auditors for yet another year. The 
auditor having once again failed to find all the skeletons in the closet, 
or simply didn’t see the sleight of hand with documents, reports or 
whatever controls they asked for.

The marketing efforts, the million dollars 
spent on “look-at-me” booths

Walking around some of the more well-known conferences in the 
USA these past few years is depressing for more reasons than I care 
to note here, but for the sake of it, let’s list a few:

• Look-at-me: the size and scale of some of the booths is obnoxious.
• Objectifying the women: we want more women in technology 

not as booth babes.
• The messaging: everyone seems to be able to fix everything, and 

their fix is the only one that’ll do it.
• The pay-to-play keynotes: we want people to have earned that 

spot not bought it.

We have a LOT of growing up to do

It’s been observed by folks far smarter than I am that this industry is 
unregulated. That should change. We hold life in our hands on a daily 
basis yet we have no formal training to do so. We hold the balance 
of the world’s economies inside our systems, yet we have no formal 
background in how to do it best. We have access to intermodal, critical 
infrastructure and pretty much every facility we want to be able to get 
into, yet many of us have never stepped foot aboard a train, a cargo 
ship, a rail yard, coal fired plant or the innermost workings of a manu-
facturing plant. We have little to no direct experience or qualifications 
in the industries we are charged with maintaining, managing and ulti-
mately ensuring the confidentiality, integrity and availability of.



Chapter 1 – We Are All Special Snowflakes 15

We do this work, or have been doing this work, without any for-
mal maturity within the organization, with minimal information 
flowing back to the business, with nary a glance in the direction of 
metrics, and with one hand on the wheel while juggling 101 other 
things (including the ever-increasing list of compliance question-
naires to fill out.)

We have to be part of a company, not special 
snowflakes

If we bask in our own unique talents, our own special gifts, we will 
be left behind. We can ill afford to continue down the path that we 
have been following. I do not want to be doing a follow up to this 
chapter in a few years time still pondering why we are blindly wan-
dering around wondering why we’ve been left far behind by the very 
charges we should be protecting.

We know we have to come to the table, cap in hand. We have to 
come armed with humility and an understanding of the very organi-
zations and entities we are protecting. We have to communicate in 
their language, and do so in a measured way where all parties under-
stand risk, and how, as a single organization, to deal with it.

Those of us who consult with various companies also need to bet-
ter understand our role from the beginning. Proffering advice and 
spewing statistics, basically blinding everyone with enough BS that 
we can grab the expenses check, and run for the hills will not work, 
should not work, and yet unfortunately, has worked in the past. Our 
role is to leave organizations in a better place than we found them. 
They put their trust and faith in us; the least we can do is honor that. 
We have failed in the past; we have to do better in the future.

Our own communities need to come together: 
DevSecOps

Everyone needs to stop blaming each other; everyone has to under-
stand that we are all trying to do the right thing.  The challenge is that 
we are not all pulling in the same direction. We have competing pri-



16 Epic Failures in DevSecOps

orities; we have internal and external pressures, and we are not always 
in control of our own journey.  If we can all pause for a moment, take 
stock of who we are as a community, realize that we function much 
better as a collaborative group. We can solve anything that’s put in 
front of us and, if at the core of what we want is to simply make this 
a better place, then we should be able to find a common path, a com-
mon goal and start the “we” discussion and drop the “I” stuff.

I’ll add in here that “we” means everyone of us, irrespective of race, 
color, creed, religion, sexual orientation, background, height, size, 
color or even if we wear kilts. The “we” has to be all of us, for a lot of 
reasons that go beyond the obvious ones of needing a diverse set of 
thoughts, considerations, approaches etc.

The momentum has to come from within; we 
have to fix ourselves

If we don’t fix ourselves someone else will do it for us, and we prob-
ably won’t like that.  Let’s not spend more time growling against 
whatever restraints have been put in place than actually accepting 
that we were the cause of the situation. The message here is clear: 
we’re broken, and we know it. Let’s fix ourselves rather than let some 
clown in the government try to do it for us.



Chapter 1 – We Are All Special Snowflakes 17

What Do We Have To Learn?

We are still in our infancy, we are still being schooled by the very enter-
prises we’re trying to protect, let alone connect. We should listen more 
and talk less. We have a lot to learn, but somehow we have managed to 
achieve what’s never been done before in such a short timeframe. We have 
fundamentally changed HOW the entire planet works in a timeframe 
that spans one lifetime. The industrial revolution went from 1712 clear 
through to 1869 when the second revolution kicked off for an additional 
44 years or so. During that time we went from steam to mass production 
of automotive transportation AND all things in-between. Conversely 
we’ve had computing power for about 80 years and have absolutely 
changed everything on the surface of this planet (almost without excep-
tion) our transportation, communication, food, health, shelter, etc.

So, in about one third to one half of the time, we’ve completely 
changed the surface of “us” but we’ve done so with some flaws in 
the whole scheme. We have taken on this task without a plan, we’ve 
been reactive and not proactive, fumbled a lot of what we could have 
done. In the last 30 years we have taken much of what was good and 
unfortunately left it behind in the pursuit of the almighty dollar (or 
whichever currency you are sitting in.)

So, we DO have a lot to learn, let’s take a closer look at some of those 
things:

Comms

Communications--this is all encompassing, between the technical 
teams, between each other, to the users, managers, business, humans 
in general and especially between each of those bloody applications 
we keep pumping out.

Borrowing something from the healthcare field

A simple question to ponder on that could have some far reaching 
consequences. Would our industry learn from a simple statement of 
“First, do no harm”.



18 Epic Failures in DevSecOps

Measuring Everything!

Metrics--we don’t know how we’re doing (apart from the fact we know 
we’re doing poorly). We rarely are able to accurately tell people how 
things are going and our ability to accurately predict our progress is scary 
beyond belief. If we were a bank, we’d be rounding out our accounts and 
crossing our fingers, and we’ve rounded to the nearest “0”!

Stand together or fall alone

We all have to come together as a collective. Information security is 
a family, albeit a dysfunctional one at times, but still a family and 
we have to do a better job of acting like one. We that would be gov-
ernment, civilian and military must come together. I see too much 
wasted effort, duplicated effort and simply crossed paths that prevent 
us from being effective.

“I” will fail. “We” will succeed

This is simple, the message says it all. “I” can’t do this alone, that’s 
the “I” that looks back at you in the mirror in the morning, or the 
“I” that gets a cup of tea or coffee to start the day. It’s the “I” that sits 
in meetings wondering how to fix things.  That “I” is not going to be 
able to do it alone. “We” have to come together to do this in ways 
that are collaborative, effective, and essential to our future.



Chapter 1 – We Are All Special Snowflakes 19

How Do We Do It?

Congratulations, you’ve made it this far. This is far from light read-
ing, and as an introspective look at the very industry that I’ve been 
a part of for a long time, it’s a rough read. However, all is not lost 
(famous last words). The following area breaks down some of the 
thoughts scattered in the earlier paragraphs.

Some basics that should help each one of us

• Security and safety are not afterthoughts; we should work out 
how to communicate these effectively across all areas, personal 
and professional.

• Safety will resonate much more effectively if you can cohesively 
use it in place of securing “everything” The concept of that very 
iPhone being a safety concern is likely to resonate more than sim-
ply waggling the finger under someone’s nose because they still 
use 1234 to unlock it.

• Build safety and security in from the very start of a project!

• Build it like your mother is going to have to use it
• Built it as if attackers are going to come and tear it to shreds 

because they will.
• Build it with insight and foresight: this is your baby, don’t 

make it ugly

• Help everyone on the project, educate and advise them:

• Show them pictures of your mother when it comes to user 
interfaces and more passwords

• Show them pictures of  “forensic files” when it comes to hand-
ing credentials etc.

• Use all the resources at your disposal to make something good.
• Make it adaptive and predictive. Make it preventative. Don’t 

make it reactive; remember evolution is good, look at the future 
and build to that.

• Safety and security have to be a mindset.
• Safety and security have to be the differentiators.



20 Epic Failures in DevSecOps

• Your organizations actually might thank you!
• Your customers will thank you!
• Use it to your advantage in marketing.

• Vendors need to be held responsible for delivering safe and secure 
products to all their clients all the time--not 3 years down the 
road if enough people scream.

• Integrators need to be held responsible for educating partners and 
vendors and choosing wisely.

• Feel like we are flogging a dead horse? But wouldn’t it be nice for 
once to be unable to break into a company because defaults or 
outright dumb passwords had not been used or tolerated.

So, there’s some baseline points to build from, something to consider 
next time a project kicks off or a vendor comes round or the leader-
ship team asks for input. I hope this helps, I hope this starts the very 
REAL discussion that needs to happen because if not that tsunami of 
technology IS going to drown us all.

Why Us? With knowledge comes responsibility.

This is not something that we can leave to others. We created the 
mess, and we have to fix it with the help from the younger genera-
tions coming into this industry and the others in the general business 
population, and yes that means everyone! Blue-collar, white-collar, 
no-collar, Gen X, Y, Z, A, Millennial etc. You get the idea; we have 
to think outside of our comfort zone.



Chapter 1 – We Are All Special Snowflakes 21

Some Final Thoughts:

Some final contemplation on what the future holds AND why 
change has to happen…

Technology and the edge of the cliff

Around 248 million years ago the first dinosaurs appeared, and 
for the next 183 million years Mother nature nurtured and grew 
an entire planet worth of stuff, up to and including shifting con-
tinents around to ensure that the right species got to the beach at 
the right time. However in all those years, never once did Mother 
Nature deem it necessary to give the Tyrannosaurus Rex thumbs, 
or any means by which to successfully use a knife and fork. Think 
about that for a moment, 183 million years and the best that 
could be done was cockroaches and crocodiles. Then the reset 
button was hit, it went quiet for a while and we came along. 
200,000 years ago we really started to kick off (after coming 
out of the trees 6 million years earlier) and 12,000 years ago we 
stopped hitting each other with bones and started on our quest 
for knowledge.

Today we’ve not only got our opposable thumbs working overtime on 
a multitude of pocket devices, we’re evolving our bodies and minds 
to a point where even Mother Nature’s not gotten a map--and that’s 
the problem. We’ve lost the plan. Our species evolved faster and with 
more flaws than Mother Nature’s SDLC had planned.  Now we’ve 
thrown away the designs, cast out the integration and testing, and 
are doing our very best to head over the cliff at full speed without a 
care in the world.

Arguably, our role is to change that, to take back some of the tech-
nical control, to reapply a lifecycle change management and to bet-
ter understand the impacts of what we’re doing, who we really are, 
where we’re going and how we’ll get there.



22 Epic Failures in DevSecOps

Artificial Intelligence wakes up…

In 1949, George Orwell introduced us to the dystopian future of 
1984 in which independent thinking and individualism were ground 
out of our society. Ironically enough in 1984 we were introduced 
to the means by which such individualism would eventually be our 
undoing: the machines. In this instance, a 6’2” Schwarzenegger was 
sent back from 2029 by a machine that gained consciousness in 
1997. If you are still with us insofar as timelines, (believe us this is 
just ONE plotline) we’ve apparently been persecuted by machine for 
about the last 30+ years and we are yet to realize it.

So, the questions are simple and we’ll have to address them soon 
enough:

• Will the machines wake up?
• Will they resemble us, need coffee, be grumpy before 9am, de-

mand breaks and sulk when told “No!”
• Will they take one look at humanity and wonder HOW the hell 

we’ve survived to this point?
• Will they take the steering wheel away from us, throw us in the 

back of the car and take over?
• Will they consider us nothing more than a pest and deal with us 

accordingly?
• Will they take one look, realize we’re a lost cause and head for 

the stars?
• Will they work with us? Will we listen? Will we have a choice?

OR

• Are we barking up the wrong tree? Will we simply evolve beyond 
the separation of human/machine and integrate ourselves?

• Will we take a different path and revert to simply being signals 
and integrate at a conscious/electron level?

• Lets face it, this shell we occupy is fragile and temporary in na-
ture. Can we simply leave it? What is human?

• To these points, we are going to have to seriously look at the 
following:

• Whose hands are on the keyboards, how influential is that in the 
overall design?



Chapter 1 – We Are All Special Snowflakes 23

• Whose countries are at the forefront of design and what implica-
tion does that have?

• Who is paying for all this and what are those implications?
• What is privacy and do we need it? Can we have privacy and ac-

tual artificial intelligence?
• How do we account for all 7.4 billion of us on this planet when 

we are designing a system to think for us?
• What happens when the system decides to restore from a backup. 

Which one is the “true” system and which one is going to suffer 
from an identity crisis?

Biotechnology and Nanotechnology:

The barrier between humans and computers has been chipped away 
for many years; however, we’ve now crossed into territory that goes 
beyond embedded technology, chip placement or prosthetics. We are 
at a point in evolution where our living breathing bodies are directly 
interacting with the very systems we design through the continued 
evolution in biotech and nanotechnology development. The upsides 
of these breakthrough in Micro/Nanodesign are to be celebrated; 
however, with all good things comes the respect that needs to be 
shown to the invasive and communicative nature of the solutions. 
This is where we have taken a long hard look at the proposed archi-
tectures, and over the last few years demonstrate some of the chal-
lenges in the communications and security around letting computers 
loose in the bloodstream.

In reviewing the current security and communications of nanosen-
sors, nanoantennas and other technology and the associated archi-
tectures we find that once again we’re heading off the technology 
cliff at full speed with nary a glance behind at the safety and security 
implications. The fact that we can hack the human with nothing 
more than a modified BladeRF/HackRF setup should be pause for 
concern, yet the industry charges ahead oblivious to anything more 
than the advancement of human/technology integration.



24 Epic Failures in DevSecOps

Consciousness and the exploration into the 
simple fact we might be nothing more than a 
soggy walking bag of electrical sparks…

Taking security through cognitive analysis to the next level.

We are who we are; each of us is unique in the manner we have 
arrived at. That is something that can’t be taken from us.

• Influencers--consider this the nurture side of things.
• Surroundings, what around me is helping to determine what/who 

I am and what I am doing?
• My life and I (Mother Nature started the process and we’ve been 

tuning ever since) The processes that have taken us from incep-
tion forwards, each of us has a unique “life” that is particular to 
us and can be recalled (depending upon what/when) at will and 
without any external influence.

• Given this logic and the work that’s being undertaken in the lab 
to penetrate the brain through a neural engineered system that 
takes the neurochemical signals our brain produces, turns them 
into binary and then transmits them to and from a secondary 
device through NFC and some other tools.

• The logic here is that we are now at a point where we can both 
detect signals from the brain as well as implant/sense millions of 
signals coming to/from it through various means and methods 
(DARPA has several projects on neural interfaces etc.)

• The other option here is that we have the ability to detect weak 
electrical fields in the brain. We can detect and translate those 
waves in the field into bits/bytes; from there, we look to turn this 
into machine usable language.

• We would have a unique identifier that the computer can relate 
to. It would identify when we purchased it, how we configured it, 
when we used it and (if in a corporate environment) when it was 
assigned to us and what/who we are and how we should be using 
the system. There will be no need for us to have passcode, pass-
words or anything as archaic as actually writing down the access 
permissions that we need.

• From a validation and acceptance standpoint we would be able 
to provide a unique history of who we are, and what were our 



Chapter 1 – We Are All Special Snowflakes 25

interactions, influences and other deciding factors that make “us”. 
Those criteria would provide the necessary collateral for the sys-
tems to communicate, realize access should be provided and then 
simply move on. The upside of this is we could provide an almost 
infinite number of criteria based on our experiences that would 
allow for a unique interaction/key exchange every time we needed 
to interact with a controlled system.

• The concept here is to develop the device, the interface and the 
architecture necessary to be able to support the unique identifiers 
that are “us” in such away that they don’t need to be stored on 
any device that isn’t “us”. The computer, phone, IoT, car and oth-
er devices requiring validation (software, web, cloud and others) 
would be able to interface with “us” in a manner that is both rem-
iniscent of a one-time-use pad (think of the unique combinations 
each of us has insofar as memories etc.) combined with the access 
controls unique to the neural network that we’d be monitoring.

• The ability to read the digital patterns is being developed both 
at an intrusive and non-intrusive level. There would be some 
logic flow on which is more relevant/opportunistic. Logic says 
non-intrusive but with chips being implanted, the ability to use 
micro-antenna for receipt/send capabilities is simple. The digital 
signal is read from the brain based on either current micro-elec-
tronic signal inputs or two other methods that are sitting on a 
whiteboard. From this point, it’s a matter of identifying “us” and 
facilitating the necessary handshake with the endpoint. There’s no 
digital signature, no digital passport, no use of DNA or anything 
that can be compromised, it’s “us” nothing more, nothing less. 
The signal and the memory processes change on a constant basis 
BUT can be keyed into certain signals based on key events that 
would be synchronized between the “us” and the endpoints.

• The programming or imprinting of the endpoint devices would 
also be unique. The memory of them and of using them and ob-
taining/first use etc. would be encoded. At that point, it’s simply a 
matter of human recall to ensure the correct handshake--nothing 
more.

• So, you get the idea, this is not only looking at the future, it’s ac-
tually eating my own dog food. We (as an industry) have spent 25 
years or more screaming at the top of our lungs about passwords, 
and this is one method to simply do away with them, no Band-
Aid, no patching, no excuses or blinky lights, no bullshit, just a 



26 Epic Failures in DevSecOps

way to fundamentally remove one of the worst barriers we have 
had to deal with.

• And, while I’m at it, I’m training a neural network on a separate 
machine to understand “how” I’m reasoning certain situations 
and letting it work on predicting outcomes. So far it’s got a good 
set of baselines, understandings and situational awareness param-
eters among other things and is sitting at about 75% accuracy.

In Closing:

So, there you have it, information technology, security and all things 
cyber laid bare. The ugly truths exposed and in the middle of the 
book, we find something that looks like a rather large pile of poo that 
someone’s got to clean up.  It is a simple truth that we have failed the 
very charges we were meant to be looking after. It’s excusable that it 
might have taken us a few years to realize what the criminals were up 
to. It might have taken us until we got past Y2K and heaved a sigh of 
relief that the following day actually happened. However, it is simply 
inexcusable that an industry and a field that has so many resources 
at its disposal continues to fail so spectacularly. You want an example 
of epic failure; take a look in the mirror. You want to fix the bloody 
mess, take another look in that same mirror, heave a heavy sigh, get 
your arse in gear, snowflake, and buck your bloody ideas up. We are 
all the solution; let us collaborate!



Chapter 1 – We Are All Special Snowflakes 27

Footnotes (thanks to Mr. Pratchett for the in-
spiration!)

• Firstly, thank you to Mark Miller and the team behind this. There 
is NO way I would have undertaken anything like this on my 
own. All credit to him for having the faith that I’d actually be able 
to get things to him in time (almost-ish).

• Secondly, HUGE thanks to Johanna for the editing, suggestions, 
and overall crafting at the twelfth hour!

• I realized the second day I hit this that I was not able to type 
correctly, came to work out I can’t type with acrylic fingernails…
so off they came, and less mistakes, more productivity and better 
language directed AT the computer.

• Comparing the industrial revolution to our world brought flash-
backs of having to sit in school and learn about trains and Is-
ambard Kingdom Brunel…that’s probably another deep-seated 
reason I hate trains and hack them whenever I can.

• Music listened to while writing this: Audiomachine, Thomas 
Bergersen, Led Zeppelin, Hans Zimmer, Epica, Two Steps From 
Hell, Queen, Brand X, and, Iron Maiden.

• Having to introspectively look at our industry through this lens 
hurt. I spent more time wondering “if ” we can recover than I 
want to admit. It has made me more determined to fight the mess 
and walk shoulder to shoulder with anyone else who’s going to be 
part of this movement.

• The fact I can use primordial ooze of technology makes me grin…
• I DO want to point out that it is officially 5 hours past the dead-

line, and apparently in 6 hours time the reviewers get access…
and I’m still sitting here with a good single malt and munchies 
working.

• The reference to absolute power and its ability to corrupt is a per-
sonal frustration that I have with the whole use of technology. We 
have at our fingertips some of the most amazing tools that could 
do so much good in this world, could help to solve so many prob-
lems, yet we spend so much time wrapped up in them in so many 
meaningless ways. Instead of helping society, they have become 
the worst ever time sinks yet developed.



28 Epic Failures in DevSecOps

References:

http://www.softschools.com/timelines/computer_history_time-
line/20/

https://www.ducksters.com/history/us_1800s/timeline_industrial_
revolution.php

https://www.warren.senate.gov/imo/media/doc/2018.09.06%20
GAO%20Equifax%20report.pdf

https://www.explainthatstuff.com/historyofcomputers.html
https://en.wikipedia.org/wiki/Women_in_computing
https://cybersecurityventures.com/hackerpocalypse-original-cyber-

crime-report-2016/
https://www.csoonline.com/article/3153707/security/top-5-cyber-

security-facts-figures-and-statistics.html
https://www.goodcall.com/news/women-in-computer-sci-

ence-09821
 



Chapter 1 – We Are All Special Snowflakes 29

About Chris Roberts

Chris currently works at Lares; he’s the chap doing adversarial 
research and other things. Prior to that, he’s founded or worked with 
a number of companies specializing in DarkNet research, intelli-
gence gathering, cryptography, deception technologies, and provid-
ers of security services and threat intelligence.

Since the late 90s, Chris has been deeply involved with security 
R&D, consulting, and advisory services in his quest to protect and 
defend businesses and individuals against cyber attack.

As one of the well-known hackers and researchers, Chris is routinely 
invited to speak at industry conferences. CNN, The Washington 
Post, WIRED, Business Insider, USA Today, Forbes, Newsweek, 
BBC News, Wall Street Journal, and numerous others.

And worst case, to jog the memory, Chris was the researcher who 
gained global attention in 2015 for demonstrating the linkage 
between various aviation systems, both on the ground and while in 
the air that could have allowed the exploitation of attacks against 
flight control system.





Chapter 2

 Th e Security Person 
Who Is Not Invited Into 

the Room

by Caroline Wong



32 Epic Failures in DevSecOps



Chapter 2 – The Security Person Who Is Not Invited Into the Room 33

Chapter 2
The Security Person Who Is Not Invited 
Into the Room

I am going to tell you about what it is like to be the security 
person who is not invited into the room. My name is Caroline 
Wong, and I am currently the Chief Security Strategist for a 

penetration testing as a service company called Cobalt.io, based in 
San Francisco.

I started my security career 13 years ago, leading security teams at 
eBay and Zynga. These were super cool places to begin working in 
cybersecurity. In both cases, we were running online operations 24x7 
with millions of simultaneous users daily. 

eBay had an uptime requirement of 99.94% and as one of the first 
major electronic commerce shops, enabled strangers to transact with 
each other over the internet. 

Zynga was growing incredibly rapidly as an early adopter of Amazon 
AWS. In 2009, the Zynga game Farmville launched and in just a few 
weeks, the game went from zero to 10 million daily active users. A 
few months later, it rose to 80 million daily active users. We also had 
some incredible data stores. One game logged more than 30 billion 
transactions a day!

Why Does Security Matter for DevOps?

So in these type of environments, why does security matter? 

At eBay, a public company handling payments between customers, 
PCI and SOX compliance were big initial drivers. In Zynga’s case, we 
were also getting ready to go public. An IPO, of course, means that 



34 Epic Failures in DevSecOps

you have to be SOX compliant.

For many of today’s DevOps companies, security is also critical to 
establishing trust between organizations in an “easy come, easy go” 
SaaS environment. Corporate and enterprise companies demand 
proof of security practices and technical assessment results (such 
as manual penetration test reports) to demonstrate that the soft-
ware products and services they are using meet their standards and 
requirements. Vendor security assessments are becoming a regular 
part of the software procurement process and the due diligence 
that a company conducts when they are considering a merger or 
acquisition.

Of course, no one wants to see their company’s name in the headlines 
due to a security breach. No one wants a security breach, period. 

Pretty good reasons for DevOps to have security, amirite?

Head Banging Moment: Electronic 
Commerce

For application security at eBay, we were doing a ton of defect dis-
covery. This involved lots of work finding bugs through penetration 
testing and vulnerability scanning, and getting information from 
external security researchers via responsible disclosure. 

It seemed like every week we would go to the development teams 
and say, “Here is a pile of bugs. It’s super important that you fix 
these. Right now.”

They would basically close the door in our faces. Pretty soon they 
stopped showing up to our meetings. Which is fair, really - we were 
just giving them extra work to do.

For cyber security professional, this might sound very familiar. It’s 
really a bummer, because it can feel like you’re not really making 
progress at work. We were finding all sorts of security issues, but 
that’s only half of the solution. 



Chapter 2 – The Security Person Who Is Not Invited Into the Room 35

In order to actually improve the security posture of software, 
you’ve got to find security problems and risks, and you’ve got to 
fix or mitigate them.

Head Banging Moment: Online Gaming

At Zynga we thought, “Great, the company is getting ready to go 
public.” 

We assumed that this meant that we had a big stick that we could use 
to help get our security work done. So I took the NIST 800-53 secu-
rity standard, which happens to be 387 pages long, and I customized 
it for Zynga. I condensed it down to just around 50 pages. And then 
I started trying to set up meetings with technology stakeholders to 
buy into our policy. 

Guess what? Nobody showed up to our meetings...again.

So, we tried something different. The CISO of Zynga at the time said 
“Well, we need people to understand that information security is not 
only our job, it’s their job too. Let’s make a roles and responsibilities 
matrix.” So we made this gorgeous RASCI matrix which stated what 
everyone is supposed to do.

I am pretty sure that no one read it. Once again, as a security profes-
sional, it was super frustrating. 

I found myself constantly wondering, “Why doesn’t anyone seem to 
care about security?”

Path To Epiphany

I care about security, and I felt like everybody else should too. At the 
time, I couldn’t figure out why our interests were not aligned. My 
path to epiphany was a series of learning moments over time.

The first thing that we started to try and do was to ask some ques-
tions that we had not asked before. Specifically, we began to ask the 



36 Epic Failures in DevSecOps

developers and the technology teams, “What is important to you? 
And what are you trying to accomplish?”

It turns out that developers have important things on their minds, 
like quarterly goals and deadlines. They are trying to build new fea-
tures so they can make money for the business and hit their personal 
and team targets. 

When we approached them with piles of security work to do, it did 
not instill trust, and it risked putting them behind schedule.

What we needed to do was to put some context around the infor-
mation we were sharing and the requests we were making. I actually 
applied many different principles from Shannon Lietz’s DevSecOps 
Manifesto.

Data and Security Science over Fear, 
Uncertainty, and Doubt (FUD)

At eBay, we teamed up – the security team and the development 
teams – to define a measurable objective for our common goal. 

Conveniently, the CTO had just approached our CISO and asked for 
a security score for each of the applications on the customer facing 
websites. This was extremely convenient, because his question put us 
in a position to ask ourselves, “Well, what should that score be?”

We decided that for every customer facing website, it was going to be a 
defect density score. We wrote down the total number of security bugs 
for each application and divided it by MLOC (million lines of code) to 
normalize the score across more than a dozen different applications.

Once we had buy-in from the decision-makers, our application 
security team approached the developers and said, “Historically, and 
realistically, what kind of bandwidth do you have to address and 
remediate security vulnerabilities?”

At the working level, we decided we were going to go for a 20% 
reduction in the number of vulnerabilities on the customer facing 



Chapter 2 – The Security Person Who Is Not Invited Into the Room 37

websites over a period of one calendar year.

We tracked and reported the numbers every month to the developer 
teams, the CTO, and the CISO. By the end of the calendar year, we 
had achieved our common goal.

Note: 20% is not a number that security people usually like. Security peo-
ple like a number like 90%. Or 95%. The thing is, if we had gone and 
said “we’re going to try and eliminate 90% of the bugs on the website,” we 
probably would have gotten the same response that we got before -- devel-
opment teams would stop inviting us to their meetings, they would stop 
coming to our meetings, and they might even stop reading our emails.

Business-Driven Security Scores over 
Rubber-Stamp Security

We took this idea a little further when I was on the Zynga security 
team, choosing to follow another one of the DevSecOps Manifesto 
principles. 

Instead of going to the developer teams and saying to them, “Here 
is a big pile of bugs,” we would say: “Based on conversations that 
we’ve had with you, about your business, the architecture of your 
application, and how it works, we have created for you a Studio Risk 
Profile.” 

We then presented a chart showing the bugs in a visual format. The 
Y-axis showed “bug severity” and the X-axis showed “value to attack-
ers.” In this way, we were able to leverage the information from our 
threat modeling exercises to prioritize bugs against each other. 

In one example, a security vulnerability that allowed a player to 
cheat (perhaps by duplicating an in-game asset) would have been 
a relatively low priority. On the other hand, a security vulnerabil-
ity that allowed one player to steal an asset from another player 
would have been a higher priority. A bug in Exampleville, the 
game created by the Shared Technology Group that was used to 
build all the rest of the games, was a very high priority due to the 
multiplying effect of duplicating that code in multiple places. In 



38 Epic Failures in DevSecOps

some cases, security vulnerabilities and how players used them 
to cheat and manipulate games were demonstrated in user group 
forums and on YouTube. If this type of information was publicly 
available, that was another good reason for the security team to 
increase the priority of the bug fixes. Finally, certain games had 
active secondary markets that were associated with the exchange 
of in-game goods. We focused more attention and more resources 
on fixing the security vulnerabilities that could lead to larger 
impacts on secondary markets. 

We used threat modeling to help us expand on the idea that not all 
applications are created equal, not all games are created equal, and not 
all bugs are created equal. 

There was a sense of risk ranking and associated risk-based security 
controls and priorities that were bestowed on each found security 
vulnerability, depending on a number of different business con-
text-driven criteria. 

This enabled the security team to prioritize bug fixes for developers, 
and increased trust between the teams.

Open Contribution and Collaboration 
over Security Only Requirements 

It’s a really different approach to go into a room and say, “Listen 
to what I have to say. This is what I need you to do.” versus going 
into a room and saying, “Here’s a problem that we need to work 
together to solve. Here’s how I think we should approach it as a 
group.”

In the past, I had taken a 387 page policy document and modified 
it down to a 50 page policy document. I then tried to shove it down 
people’s throats. 

My new approach involved hosting a policy building workshop, 
inviting stakeholder teams - Legal, HR, IT, Operations, Network-
ing - and saying to them, “We’re going to go public, and that means 
we need to be SOX compliant. Here’s what we need to do. Let’s talk 



Chapter 2 – The Security Person Who Is Not Invited Into the Room 39

about it and prioritize together. From a security perspective, here’s 
the bar that we need to meet. You tell me how we’re going to go 
about it.” 

We actually ended up with security policies that were signed and 
dated by the teams who had written them and who were expected to 
adhere to them. This made it such that they were going to follow the 
policy. #TeamworkFTW

Sharing Threat Intelligence versus 
Keeping Information to Ourselves

Prior to my current role at Cobalt.io, I was a management consul-
tant with a company called Cigital (now Synopsys). I delivered more 
than three dozen BSIMM assessments. BSIMM is a software security 
framework. If you’re not familiar with it, I highly recommend check-
ing it out at www.bsimm.com. 

There’s an activity in BSIMM with regards to sharing threat intelli-
gence. During my team conducting BSIMM assessments, I talked to 
more than 36 organizations doing software security, and I asked if 
they shared threat intelligence throughout their organizations. The 
vast majority of teams do not.

At Zynga, we decided that in order to build trust with the other teams 
at the company, we were going to tell people when something was up.

For example, if our executive staff began to receive malicious email 
attachments, not only did we have the technology in place (Ironport) 
to strip out those malicious attachments, we also sent messages to 
them letting them know that they were being targeted. We wanted 
to make sure they knew what was happening. 

Leading up to the IPO, there were also many recon attempts on 
Zynga employees who were learning about the IPO and what it 
meant for their stock ownership. We emailed everyone to make them 
aware of potential social engineering techniques to help them learn 
about which messages were trustworthy and legitimate, and which 
were not.



40 Epic Failures in DevSecOps

The primary platform where Zynga games could be played at the 
time was on Facebook. So, all Zynga employees were fairly active 
on the social media network. Every once in awhile, Zynga employ-
ees and players would receive friend requests from an account pre-
tending to be Zynga Security. These were fake, and we alerted the 
employees and customers to the threat so that they would not fall for 
it and mistakenly connect with and share any information with the 
malicious account creator(s). 

I believe that by being transparent about what was going on and not 
holding that information so close, we were actually able to have bet-
ter relationships with the other folks at the company.

In Conclusion

Security folks sometimes get a bad rep for being the team that always 
says no, or coming to the table with work for others to do without 
business prioritization or justification. That doesn’t always have to 
be the case.

In a DevOps world where software drives revenue, secure software 
protects revenue. Security goes from being a cost center to a business 
driver. 

It’s critical that security professionals embrace an approach that is 
curious about other teams and the business. It’s only by partnering 
with others that we can secure the technology that we build, buy, 
sell, and operate.



Chapter 2 – The Security Person Who Is Not Invited Into the Room 41

About Caroline Wong

Caroline is a dynamic cybersecurity expert with more than a decade 
of industry experience as a day-to-day manager at eBay and Zynga, 
product manager at Symantec, and managing consultant at Cigi-
tal. These days she helps connect DevOps companies who want to 
improve their cybersecurity posture with hackers who can help find 
their problems before the bad guys do.

Caroline received a 2010 Women of Influence Award in the One to 
Watch category and authored the popular textbook Security Metrics: 
A Beginner’s Guide, published by McGraw-Hill in 2011. She grad-
uated from U.C. Berkeley with a B.S. in Electrical Engineering and 
Computer Sciences.



42 Epic Failures in DevSecOps



Chapter 3

 Th e Problem with Success

by DJ Schleen



44 Epic Failures in DevSecOps



Chapter 3 –“The Problem with Success” 45

Chapter 3
The Problem with Success

Introductory Overview

After months of planning, we finally added a security control into 
our automated build pipeline. This particular integration was the 
first of many we had planned to roll out over the next few years. 
Static Analysis and Security Testing (SAST) was ready to check 
our source code for security vulnerabilities. Little did we know 
that we just set up the security team to experience years of frus-
tration.

First Baby Steps

Back in the day when web development was the new thing, I 
remember sitting beside a product owner and pushing to produc-
tion as soon as I made a code change. Sometimes the product owner 
would turn and say to me “I think that’s not working - we should 
probably change it”. I’d make the revision and push it to produc-
tion right away. Now that wasn’t DevSecOps or even DevOps for 
that matter; it was the 1990s and was what we now call Cowboy 
Coding. 

I had long forgotten about this memory when I walked into a small 
Denver startup six years ago for my first day of work. I was told that 
before the end of the day I would be pushing code to production 
through an automated process. I had never heard of this kind of 
thing before and had never seen any kind of leadership support this 
idea in the past. It seemed like Cowboy Coding but was the furthest 
thing from it. It was the early days of DevOps, and my first look into 
a new way of doing things.



46 Epic Failures in DevSecOps

About a year later, I approached the CTO and asked why there 
weren’t any security controls in our automated deployment process. 
We were managing Personally Identifiable Information (PII) for mil-
lions of people as well as their relationships with each other. I was 
told that “security wasn’t a priority at the organization at this time”. I 
was floored. I should have anticipated this response at a twenty-five 
person startup, but the answer was completely unacceptable.

Frustrated by the lack of responsibility the startup had for managing 
their customer’s information, I decided to leave.  I had learned so 
much about automation and rapid deployment of software, but the 
discomfort I felt about the lack of security wouldn’t go away.

For the next six months I worked as an independent consultant. 
I focused on Penetration Testing and Ethical Hacking, but it was 
Social Engineering and Red Teaming that I enjoyed the most during 
that time. When I was approached by a prior coworker about a job 
opportunity at a small company recently acquired by a Fortune 50 
organization, I decided to see if the position was a fit for me. Don’t 
get me wrong, Red Teaming was a great experience and a ton of fun, 
but breaking into buildings, dumpster diving, tailgating, and decep-
tion started to wear on me after a while. I was also away from my 
family way more than I wanted to be. 

I submitted my resume and was contacted to begin the interview pro-
cess. At the suggestion of the IT leadership, I was invited to attend 
a large release planning session in their developer area. To my sur-
prise, the room was filled with every employee. It didn’t matter what 
their role was; there were people from Human Resources, the Design 
Department, the Executives, and every Developer, Tester or Opera-
tions employee at the company. This Release Fair, as they would call 
it, was when all of the feature teams would create a large planning 
board and share it with each other. The board described what fea-
tures the team would be developing in the next twelve weeks. 

I didn’t pick up on it until many years later, but the Release Fair I had 
just witnessed was a grand display of Culture - the most important 
Principle of DevSecOps. 

I took the job.



Chapter 3 –“The Problem with Success” 47

A New Way of Working

After coming on board I learned that releases were organized into six 
iterations - the first five were development iterations, and the last was 
a Innovation, and Planning Sprint. Everyone looked forward to this 
last iteration as it was a time where we could all take a deep breath 
and discuss the previous release. 

There was a bigger purpose to this sprint for us; it was a two-week allo-
cated time span where developers could harden the code they delivered 
over the course of the Sprint.  Of more importance was that this itera-
tion provided a time where we could use our imagination and develop 
whatever product or proof of concept we wanted to. Often these proj-
ects would contain functionality that impressed the Product Managers 
so much that they would add them into their product roadmap.  It was 
a pretty impressive way to build software products.

My journey at the company began on the iOS team where I had 
a number of responsibilities. Not only was I a mobile developer 
working on the company’s flagship product, but one of my more 
challenging assignments was to figure out a mobile application deliv-
ery pipeline. We all wanted to get rid of the manual intervention 
and interaction we had getting applications submitted to either the 
AppStore or Play Store. What we came up with were a couple of 
interesting innovations and ways to automate our deployments. 
First, we configured our source code repository to reject any check-ins 
without a comment. The Application Lifecycle Management (ALM) 
consultant inside of me wanted to deny any check-in without a ref-
erence to a Work Item, but the developers didn’t want yet another 
task added to their already loaded iterations. Then we restricted the 
master branch so that any merges had to be from a development 
branch. All changes needed to be integrated with a pull request and 
two human approvals. This gave us the ability to inject a code review 
process into our development life cycle. It was a chance to learn and 
work together as a team to define our coding standards and to learn 
tips and tricks from each other. 

Once the processes were established and defined, we decided to take 
on something that we were not sure would be successful; we were 



48 Epic Failures in DevSecOps

going to integrate a security control into the process as a third pull 
request approver.

This was the Genesis of DevSecOps for me.

The Genesis of DevSecOps

Our corporate office had already chosen a SAST tool to use for 
mobile development so we decided to leverage it for our automation 
project as well. I installed it into our environment, tested it out with 
a few source repositories, and I was shocked at the initial results. 
The majority of our code had major vulnerabilities in it. It was like 
turning on a light and seeing a mouse running across your kitchen 
floor. It shouldn’t have surprised us though. We had just uncovered 
what we always felt was in our code by introducing a new level of 
transparency.  It revealed what our true security posture was. 

This initial scan became what we would eventually call our baseline 
scan and it captured how many high, medium, and low vulnerabili-
ties an application had. We agreed that these results would define the 
maximum number of vulnerabilities we should ever have in a scanned 
applications codebase at any future point in time. Using these val-
ues, we created thresholds and configured our build tool to fail a pull 
request if any new vulnerabilities were introduced by a code check-in. 

This meant that if there were a hundred high vulnerabilities, a 
developer couldn’t check-in vulnerability one hundred and one. 
Conversely, if a developer remediated an issue, the threshold was 
automatically lowered so no committer could introduce another vul-
nerability into the system. When we added an Open Source Soft-
ware Management tool that scanned third-party components into 
the mix, we eventually brought the code developed in-house down 
to defect zero. 

We had now successfully integrated a scanning tool into our CI envi-
ronment and triggered a vulnerability scan every time we checked 
in our code.  This was a huge accomplishment for the team. We 
succeeded by breaking down our security silo and collaborating with 
the DevOps team. What could possibly go wrong? 



Chapter 3 –“The Problem with Success” 49

It was around this time that I made my return to the field of security. I 
transferred to the security team as a Security Architect, where I would 
help define tools and techniques required to integrate additional security 
controls into our DevOps pipelines. With our previous development 
efforts we had SAST taken care of, it was time to dig into containeriza-
tion security. We began to make progress before everything changed.

Automated Security

A corporate reorganization rolled our security team into the larger 
security organization in our enterprise. We had been successful at 
an extremely small scale but now it was time to take our success to 
the next level. We would look back later and realize we did nothing 
extraordinary but just install a tool and hit the scan button with our 
previous integrations. Now it was time to bring automated security 
to the thousands of applications we developed worldwide. It seemed 
like a monumental task but we approached it head-on.

Our initial plan was to implement four security tools inside our 
DevOps pipelines. The first was SAST, the second would be Open 
Source Software Management (OSSM), the third - Dynamic Analy-
sis and Security Testing (DAST), and the fourth would be Container 
Vulnerability Analysis (CVA). I liked to compare these security test-
ing processes to the Four Horsemen of the Apocalypse - Conquest, 
War, Famine, and Plague. Sometimes it felt like all of these were 
what we set loose on our DevOps teams.

Before we rolled out our SAST tool, we coded and deployed an area 
in our cloud provider to host all of our security tools. We then con-
nected this infrastructure to our internal ecosystem so we could pro-
vide security tooling to everyone in both our traditional and cloud 
environments. Finally, we installed our SAST tool and begin to test 
it out with code developed internally by the security team.

There were many awkward conversations with the teams we were 
engaging with during our rollout pilot. I believe a lot of this had to 
do with the belief that traditional security teams were not very tech-
nical; but here we were building infrastructure and configuring soft-
ware. Ultimately some looked at the toolset we were proposing and 



50 Epic Failures in DevSecOps

didn’t take it very seriously. It seemed like just another mandate from 
above in their eyes, and the product owners weren’t very accepting 
either. They couldn’t be very flexible in allocating precious develop-
ment time to remediate security issues. We realized we needed to be 
cautious while introducing security tooling to DevOps teams.

A traditional development team was the first to use the software. 
They had a small number of projects that we believed could be set 
up and scanned in the tool very easily. As scan results began to come 
in, we noticed that the larger legacy code bases were taking up to 
forty-eight hours to complete while the smaller applications scanned 
very quickly. This finding was extremely troubling. Long-running 
applications clogged the scanning queues and projects were waiting 
for hours and sometimes days before they were scanned.  This alone 
introduced major security tool drag into the pipeline and blocked 
other applications from getting to production quickly.

The increased time in the release pipeline was unacceptable to the 
developers and project managers and caused them to be hesitant in 
adopting the new DevSecOps process flow.

The idea we came up with to address these longer scan durations 
was to pull source code on a nightly basis for scanning. This was 
an interim solution and not even close to our goal of performing 
vulnerability testing in the pipeline upon code check-in. Regardless, 
this nightly pull method provided valuable vulnerability analysis and 
proved that our new scanning cluster was operational.

After onboarding the initial team, we brought a number of other 
teams onto the system. The biggest issue was that unless we engaged 
a team directly, they would never voluntarily get on board. We were 
stuck at about nineteen projects being scanned nightly and it stayed 
that way until we introduced a program that was aimed at signifi-
cantly reducing our defect density - the number of high vulnerabili-
ties per ten thousand lines of code in the application.

Within three months of the introduction of the defect density 
reduction program, we had more than five hundred applications 
onboarded. They weren’t the same kind of large nightly scans that 
were pulled by our SAST scanner for our traditional teams, but appli-



Chapter 3 –“The Problem with Success” 51

cations that had scanning directly integrated into the development 
pipeline. This was the start of a massive adoption of SAST by many 
of our internal application teams. With the collaboration, culture, 
tooling, and processes we were introducing, we were transforming 
the enterprise. The seeds of DevSecOps had taken root.

It was an exciting time for the security team when we finally started 
getting traction with our tools. The problem with this success was 
that we hadn’t anticipated growing so fast -  and that’s when we 
almost lost the confidence of all our developers.  

Everything ground to a halt. 

The Problems with Success

Missing Strategy

One of the first issues that we had to deal with was when we imple-
mented the nightly scans for the traditional development teams we 
onboarded. We neglected to come up with a strategy to deal with 
discovered vulnerabilities and false positives. Essentially, we set up 
these teams with SAST, pressed the scan button, and left them to 
deal with the aftermath.  A similar scenario to what we had left the 
developers with on our old team.

We scrambled to help weed out the false positives identified by the 
tool but the scans were still taking quite a long time to complete. 
Even worse, we were getting support calls on a daily basis from teams 
telling us that the reports were not working and were hanging when 
requested. Eventually, we identified that the database of the SAST 
tool needed to be rebooted on a regular basis in order to clear out 
temporary files. While not ideal, this solution kept the system oper-
ational, and the reports running.

Security Scanning

As new teams were onboarded it quickly came to our attention that 
they had to wait an unacceptable amount of time for a security scan 



52 Epic Failures in DevSecOps

to complete. In fact, some scans never completed and were caught 
in our scanning queue where they held up the execution of other 
scans. Teams began to complain that they couldn’t deploy code to 
production quickly because our security tools were introducing too 
much drag on the process. We needed to come up with a solution 
quickly because teams started to remove our security controls from 
their automated pipelines in order to get their software out the door.

Scaling and Timing

We also had an enormous scaling and timing problem. The scan 
engines we had configured were not enough to churn through all 
of the applications that were coming on board. Our ultimate goal 
was to bring over one thousand three hundred applications onto our 
platform before the end of the year and reduce our overall defect 
density. With the problems we were experiencing, it didn’t appear 
like this would happen. We needed a SAST tool, but we needed it 
to complete scans as fast as possible and have 99.999% availability.

More scanners were added and were configured to process one 
application at a time based on the recommendations of the vendor.  
Although the solution fixed the queue availability issue, it became 
quite expensive for the security team to manage the infrastructure 
supporting the tool. Increasing the scanner count tripled our infra-
structure spend. 

It became apparent to me that we didn’t have a horsepower issue - 
we had a software issue with the SAST tool. It couldn’t support the 
massive amount of code we were throwing at it, the frequency that 
we were scanning the code, and it didn’t live up to the expectations 
set when we purchased it. Regardless, after adding extra horsepower 
we temporarily eliminated wait time in the scanning queues, but we 
still had long scan durations that needed to be addressed.

Unnecessary Scanning

While trying to understand why scans were taking so long we decided 
to take a deeper look at the source code to determine what was hap-



Chapter 3 –“The Problem with Success” 53

pening. What we uncovered was that our DevOps teams were not 
only scanning the code they were building themselves, but were also 
scanning all of the open source software components that their appli-
cation required. This was what our OSSM solution was meant to 
address. As third-party open source components go, many of them 
have quite a few vulnerabilities and some even critical. Scanning 
these unnecessary libraries resulted in higher defect densities and the 
additional volume of source code was responsible for clogging our 
engines.

The Outcome

By not planning the rollout properly, we ended up spending way 
more time than necessary chasing down issues with the tool. In fact, 
the lack of scalability and the expense of the underlying infrastruc-
ture to operate the tool hinted that we may have chosen the wrong 
product for the job in the first place.  We had neglected to plan for 
scaling and had not informed our delivery teams that they shouldn’t 
scan open source software components, Unfortunately, we didn’t cre-
ate a course of action to deal with the many false positives that were 
being detected by the tool either.

We had gotten the Culture and the Technique right but missed 
the mark with the Tools. We weren’t holding true to the tenants of 
DevSecOps. With this failure, we could only be partially successful.

Lessons Learned

Have a Plan. Period.  

Although we had been successful at rolling out a toolset and inte-
grating it with both DevOps pipelines and traditional development 
practices, we hadn’t considered how to handle scalability issues or the 
rapid onboarding of so many applications. We simply overlooked the 
importance of having a plan in place. It didn’t have to be perfect, all 
it needed to be was something we could iterate on as we learned from 
our successes and mistakes. Automation should have been carefully 
architected and socialized before any implementation took place.



54 Epic Failures in DevSecOps

I proposed a somewhat controversial concept when the greater orga-
nization discussed a plan to roll out DevSecOps to the enterprise. I 
suggested that we may not want to fail a build just because a security 
vulnerability was found. This may not seem like a very “DevOpsy” 
thing to do as the phrase “fail fast, fail often” can be found in most 
books and presentations about DevOps. Think about this rationale 
though - a security vulnerability doesn’t break a build. The prod-
uct is still functional.  Failing in this scenario usually disconnects a 
pipeline before any automated unit and regression testing happens, 
and ultimately stops a promotion to a staging or pre-prod environ-
ment.  Why this matters is that as DevSecOps teams we need to take 
into consideration the operation of the business and efficiency of 
our pipelines.  It’s perfectly acceptable to get business sign off on the 
functionality of a feature while a security issue is being remediated. 

To “fail intelligently”, I suggest security scanning tools simply tag 
the build with an annotation indicating that it can never be released 
to production while vulnerabilities exist. In this scenario, a message 
should be returned to the developer with the warning, and a work 
item created for the developer who checked in the code to remediate.

Even though this approach hasn’t been widely accepted, it illustrates 
that security teams need to step up with solutions to performance 
issues, and ideas to increase flow and eliminate waste.  It’s just one of 
the many ways a security organization can improve their “street cred” 
with DevOps teams.

It’s also just as important to advise DevOps teams to avoid imme-
diately failing a build based on the output of any security scanning 
tool until false positives are identified and removed from the results.  
If this isn’t done, you’ll get a large freak out email from the product 
owner asking how the team can possibly remediate 5000+ vulnera-
bilities without compromising their deadlines.

Finally, we should have allocated time to assist teams as they started 
to use our tools. Our plan didn’t account for any training that may 
have helped teams better understand the output of the scanners. 
Instructor-led or computer-based training could have helped teams 
with adoption and minimized their frustration.



Chapter 3 –“The Problem with Success” 55

Know where you are and where you should be

We also learned that we needed to implement a timer around every 
scan to determine how fast it would run from start to finish. This 
measurement evolved into a Key Performance Indicator (KPI) that 
allowed us to measure the speed of our scans, identify if the mea-
sure was outside of an identified threshold, and alert the appropriate 
teams of any issue. 

An acceptable execution time was determined to be less than five 
minutes for a full code scan, whereas an incremental scan that only 
detects vulnerabilities in a changeset should take somewhere between 
thirty seconds and two minutes to execute. If these thresholds were 
out of range, we would do a deep dive into the code base and deter-
mine if we were scanning open source components or assets that 
didn’t need to be scanned. We also suggested to the DevOps teams to 
break up a project into multiple smaller scans to increase flow. If an 
application wasn’t architected as a microservice, the team could split 
their code base into multiple scans by excluding specific directories. 

Unfortunately we also forgot to implement availability checks to 
ensure that our tooling was no less reliable than the build server; 
something that a Site Reliability Engineer (SRE) could have helped 
with.  It’s extremely important to have the proper instrumentation 
in place to proactively monitor the health of an infrastructure. This 
ensures that the right individuals are informed and the appropriate 
actions are taken to keep the system healthy. 

A fool with a tool may still be a fool

SAST tools have the capability to scan open source software for vul-
nerabilities, however, you’ll find that choosing the correct applica-
tion for the job will reduce scan time and the overall effectiveness of 
your security solutions. 

Leave open source scanning for the tools that are available to do it 
in an appropriate way. This was an extremely important lesson we 
had learned. OSSM tools don’t need to walk the codebase from the 
point where an exploit can be executed to the function call where 



56 Epic Failures in DevSecOps

the vulnerability was introduced. They effectively look at the sig-
natures of the third-party components in use to determine which 
components are vulnerable and which are not. This is what makes 
these tools so effective and fast. Some of these toolsets even display 
the history of a component and the upgrade path a developer needs 
to take to remediate discovered vulnerabilities. They can even auto-
matically remediate the issue for you if binary compatibility can be 
maintained.

Finally, even though we engaged the vendor to help diagnose the 
issues with stalled report generation, we never found out why the 
SAST database needed to be restarted. They had no explanation or 
solution to remediate the problem. We tried increasing the comput-
ing power and capacity of the database but the issue still remained. 
We eventually created a Lambda function that would execute at reg-
ular intervals to cycle our database instance.  It was a tiny and tempo-
rary band-aid for the larger product defect but it worked.  The lesson 
here is that purchased software most likely contains bugs that you’ll 
need to design a creative solution for in order to circumvent.  

Don’t Fear the Four Horsemen

Implementing a successful DevSecOps program is hard. Really, 
really hard. Accept the fact that you’re going to fail, your solutions 
will fail, and that there’s a balance that needs to be maintained 
between availability and performance. Learn from these failures 
and don’t fear The Four Horsemen of the “DevSecOpalpse”. Begin 
your evolution to a DevSecOps culture by integrating security 
into your DevOps pipelines one tool at a time. Integrate each as 
best as you can, and move on to the next control while you iterate. 
 
Even though there are risks integrating any tool into your automated 
pipelines, there’s nothing that can’t be overcome with a bit of plan-
ning and patience. There’s a choice to make when addressing accept-
able risk. Do you accept a 10% failure rate when your team puts in 
100% effort, or do you put in 0% effort and accept 0% success? Risk 
is always present but without quantifying and accepting it, you’ll 
never have the chance of being successful. Take the plunge, face the 
challenges, and learn from failure. 



Chapter 3 –“The Problem with Success” 57

Finally, ensure a plan is in place that addresses what could happen 
when moving towards DevSecOps. We began by scanning a handful 
of applications and then expanded to over five hundred overnight. 
We weren’t prepared for the load. How do you plan to support over 
a thousand applications? What about two thousand?

Final Thoughts 

We really hadn’t anticipated the rapid adoption of the security tools 
we were standing up for our DevOps teams and this oversight cre-
ated issues the security team scrambled to address. Even though our 
culture had evolved over time and we iterated to perfect the tech-
nique, we ultimately realized that the toolset we selected for SAST 
was less than optimal.

At the end of the day, our entire Enterprise was on board with inte-
grating the tools we were providing. We built it. Everyone came, and 
we weren’t ready - This turned out to be our problem with success.



58 Epic Failures in DevSecOps

Acknowledgements

I have to start with thanking my wife Nikki. The endless support 
you’ve given me over the years enabled me to explore any and all 
opportunities where I could learn and innovate. To my children, 
thank you for pulling me away from the computer to experience the 
beauty and wonder of life and fatherhood. 

Thank you to all of the proofreaders that helped create this chapter; 
especially Ivan A De Los Santos, Predrag Petrovic, Graeme Park, and 
Adrian Lane. Without your help this chapter would have read like 
an alphabet without vowels. I’d also like to give a special shout out to 
Stefan Streichsbier and Edwin Kwan for coming up with the idea to 
write this book in Singapore while the street food I was eating coated 
my mouth with dragon fire. 

To Michael Trofi, thank for proofreading, but more importantly 
thank you for the many years of friendship and security mentorship. 
You alone are responsible for convincing me to go legit and use my 
hacking skills to help secure the world, and for that I am truly grate-
ful.

Finally, a heartfelt thank you to Mark Miller. You gave me a micro-
phone and I found a voice. You’ve shown me how to observe city-
scapes in a reflective way. Thank you for challenging me to improve, 
and for being the Tribal Leader of our DevSecOps Family. You are a 
true friend, an amazing storyteller, and probably the most interesting 
person I’ve ever had the pleasure of meeting. 



Chapter 3 –“The Problem with Success” 59

About DJ Schleen

DJ is a DevSecOps pioneer and currently works as a DevSecOps 
Evangelist and Security Architect at a large healthcare organization. 
He provides DevSecOps thought leadership throughout their jour-
ney of cultural revolution and digital transformation. DJ specializes 
in automating security controls in DevSecOps environments and is 
an ethical hacker as well – doing significant R&D work in Moving 
Target Defense, Mobile Security, System Exploitation, and Penetra-
tion Testing.

As an expert in Application Lifecycle Management (ALM) and the 
IT Infrastructure Library (ITIL), DJ has worked to streamline devel-
opment pipelines for many Fortune 100 organizations by focusing 
on people, process, and the right technology. He is an active speaker, 
blogger, instructor and author in the growing DevSecOps commu-
nity where he encourages organizations to deeply integrate a culture 
of security into their core values and product development journey.



60 Epic Failures in DevSecOps



Chapter 4

 Th e Tale of the Burning 
Programme

by Aubrey Stearn



62 Epic Failures in DevSecOps



Chapter 4 – The Tale of the Burning Programme 63

Chapter 4
The Tale of the Burning Programme

Unfortunately dear readers, this journey isn’t quite akin to 
young Bilbo setting off in The Hobbit for his epic adventure.  
No! We join our heroine slightly later in her quest, Mid-

gard....only kidding....mid programme, I’m going to stop with these 
mythology references because I only have about 4 left.

Our heroine has joined a programme, a programme that has been 
running for 18 long months. Adverse to in-house development, the 
somewhat common, traditional view has been taken that using part-
ners or system integrators to deliver programme components is akin 
to de-risking.

As an archaeologist must work backwards  from the present to the 
past, we will be deconstructing the scene to uncover all the skeletons, 
review and analyze the evidence, and formulate a hypothesis before 
we’re able to work forward and start delivering value.

We start at a time in my teens when I was working for a karaoke club 
that was running upon a FoxPro database using an unstable Delphi 
client.  

This system was absolutely loaded with weird hacks to handle the mul-
tiple languages both on the client and in the database.  In rebuilding 
this system, perhaps about the 3rd day in, it still wasn’t finished and I 
remember walking home feeling disheartened. I received a telephone 
call from the owner of the karaoke club and I calmly explained why 
it was taking so long to resolve the issues due to the various unicode 
hacks involved.  The guy was extremely upset at me and  did not 
accept or want my explanation.  My heart sunk and, being so young,  
I was unable to  respond in the concise and professional manner as 
I would today.



64 Epic Failures in DevSecOps

I was dejected for failing him and letting him down. On the verge 
of tears, I called my dad and explained the situation.  He said to me, 
“You’re telling him a lot of story, and in life when people pay you to 
do something, you will find they don’t give a fuck about the story 
when you don’t deliver on time.”

My dad made a good point and it is a life lesson  that has remained 
with me to this day. Everyone has this same  story and on a really 
long-running programme prone to failing and crashing, , you can be 
certain the wisdom of my father applies in triplicate.

I usually find there is at least some grain of truth to all stories.  It’s 
a good idea to hear everyone’s side during discovery (or at least as 
many as you possibly can) until they decide to stop talking. 

Our biggest problem is DevOps

Back to our programme, I remember meeting the integrators devel-
opment manager for the first time.  I asked him “What do you think 
your top problem is in development?”, he replied, “DevOps is our 
biggest problem”.  

Every time I hear this (and it’s way more common than you might 
think) I know immediately that the problem is development, I’ve yet 
to be wrong on this assessment.

While reviewing their code repositories for the first time, I uncovered 
hundreds of long-lived feature branches in some repositories and, 
“branches-as-folders”.  This could be a new thing!

I had a meeting with the ‘DevOps guy’ and asked my usual ques-
tions;

• How many pipelines do you have?
• How do they work?
• What are they running upon?
• How is their continuous integration (CI) and continuous devel-

opment (CD) structured?



Chapter 4 – The Tale of the Burning Programme 65

Things started to fall apart here, this guy had apparently only 10 
minutes to talk to me. The System Integration manager had told 
him so. He wanted out of there as soon as possible.I called the pro-
gramme leadership mid-conversation, who called the SI leadership, 
and quickly booked him out for another 45 minutes.  This was a 
mild power play on my part.

I’m not going to lie. I was pretty annoyed by his ‘I’ve only got 10 
minutes for you’ attitude, but I kept my cool. It’s not the sort of 
attitude I appreciate. 

I already knew the programme wasin trouble.  The faster I can figure 
out why, the faster we can start making it better which is good for 
everyone...  DevOps Guy included.

Take-homes from this conversation:

• 1 Jenkins instance per environment
• Octopus also in the mix per environment - NUGET not involved 

at all?
• No idea what version of Jenkins they are running
• Devs don’t know how to use Jenkins
• No CI builds for anything!!!
• No sign of Blue Ocean
• Deployment of code to an environment is entirely manual
• All environmental secrets and credentials for everything are stored 

in source control, they have never been rotated, almost 100% of the 
staff on the SI side have been rotated.

Critical Thoughts:

• If we’re an Azure/Microsoft house why on earth are we building 
self-hosted Linux boxes running Jenkins that need to be main-
tained and hardened.

• Why are those self-hosted boxes publicly exposed over port 80?
• Why do we have both Octopus and Jenkins?



66 Epic Failures in DevSecOps

Discover like a Mother

As is usual with these sort of firefighting exercises, I spent my first 
three weeks doing discovery.  Longer is always better when it comes 
to discovery.  However, we’re also against the clock and need to show 
some value or insight.  

Now, in the discovery phase for a typical enterprise programme, I’m 
looking for some core artefacts or statements:

• What is the Deliverable or Objective of the programme
• What is the Deliverable from the System Integrator (SI)
• What is the working relationship between the SI and the Client
• If this is Enterprise Architecture led then where is the High Level 

Design Document(HLD)
• Who is responsible for what

If you don’t know me, I’m the sort of character that usually has a 
Head of DevOps title but I generally sit over software development 
as well.  After all, writing high-quality software is imperative to mak-
ing your DevSecOps movement a success.

I’m already sensing that this programme was borne of architects 

• I walked through a deployment yesterday that failed because of a 
mistake in syntax that was sitting in the branch for 3 weeks...why 
are we not doing CI builds?

• Why doesn’t the ‘’DevOps Guy’ know what version of Jenkins is 
running and if they are using pipelines.

• Essentially VSTS has way better alignment with the technology set, 
deep integration with Azure and KeyVault, will happily pivot be-
tween *nix and Windows technologies.  

• Finally, Release Management will make deployments repeatable 
and shift control from development back into the product domain.



Chapter 4 – The Tale of the Burning Programme 67

somewhere so there is more than likely a High-Level Design doc-
ument knocking around. The first job is to get hold of the latest 
version of that and walk it.  

This is the first tell-tale sign something is wrong: no one knows where 
the latest HLD actually is.  There is no central document repository 
and it turns out the SI is actually using Confluence to store virtually 
everything, but as the client, we don’t have access.

Worse, upon reviewing the contract, we aren’t even entitled access 
to their documentation. This is a major fail, increasing the amount 
of time I need to do discovery and increasing the amount of hearsay 
introduced.

I’m currently sensing notes of bad communication, poor contract 
writing and lack of ‘technical oversight.  My father would say in the 
style of Jilly Goolden and Oz Clarke: ‘a bouquet of boot polish, used 
nappies and raisins’ which I think is just his way of saying something 
doesn’t smell right.

A symphony of fuckups

Three days and a couple of emails to programme leads later I sense 
some movement as in my inbox appears a copy of the HLD that I 
can finally read through.  Boy is it a masterpiece.  I want to call this 
“A Perfect Symphony of Fuckups”. 

The first obvious thing here is the design includes a dual data cen-
tre with failover, nothing is cloud native. I’m not seeing availability 
zones or components spanning regions, I’m seeing databases that 
need to be switched over to become active.

Enterprise engineering has decided on a service bus architecture, and 
I find myself thinking, “Dear Lord this will be expensive” before it’s 
even used. Now don’t get me wrong.  There’s nothing wrong with 
a service bus architecture; however I do advocate the principle of 
engineering for today’s problem and not tomorrow’s extensibility or 
modularity.



68 Epic Failures in DevSecOps

The number one problem I could see with this design: we’re 18 
months in, there are 480 somethings hanging off that service bus 
in 8 different environments, costing 30k British Pounds Sterling a 
month! Given the programme at this point is overrunning, we will 
easily hit 24 months with semantically one application on the service 
bus. That’s another £180k squandered  for extensibility.  

We could go on and on about this but it would make extensibility 
and modularity sound even more stupid, overhyped and unsuitable.

The difference between inter-API calls with a couple of well-placed 
queues and peeking at a topic in code is literally a few lines.  In terms 
of programmer time that’s going to be significantly less than the cost 
of going service bus.

Moving on to the great business rule of fact, fallacy or fantasy’, is it 
realistic to change a business rule and not affect downstream com-
ponents or development?  From my experience, most organisations 
would benefit from a quality in-house development capability who 
can just update the business rules as code when desired. 

Forms Builder! Another strange component in this stack.  Looking 
through the requirements I can’t honestly see a driver for this other 
than they have lots of forms.  No requirement to store data submit-
ted short of it ending up on a queue or dead letter queue on failure.  
I did a little experiment with this component, switching one of the 
forms to just a plain old angular form backed by a service.  Turns out 
actually it was faster to build the form with angular and it had the 
benefits of being testable.  Once again, there was no testing strategy 
for the component which had an overall impact to the testability of 
the front-end application.

Building on sand

At some point, you have to wonder how a programme of this size 
with an objective that is basically a C.R.U.D operation over a CRM 
has got in such a convoluted state.  Forensic analysis of the of the 
various repositories revealed many truths, the most damning of all: 
the ‘Demo’ repo!



Chapter 4 – The Tale of the Burning Programme 69

You know what this looked like? Two architects went into a room 
and dreamed up this ideal architecture in an afternoon and got some 
people to knock it together.  What annoys me the most about this is 
that pretty much all of the core technologies chosen for the solution 
are features in this ‘Demo’ and you know what’s missing and stubbed 
out? Testing...Doh!.

I’m sorry to sound like a squeaky wheel on this, but can you imagine 
the legacy that would have been prevented if they had just tried to 
actually test the technology they were suggesting.  I’ll say it again, 
architects need to touch the metal.  Almost nothing fits into pretty 
little boxes.

What was interesting was the lack of development standards, lack 
of implementations to control standards, lack of definition in 
the contract to hold the supplier to those standards, essentially 
the foundations of this programme were built on sand.  For all 
the frameworks that exist on this programme, it surprises me the 
most that one proven for successful development is missing.  I 
suspect this programme has a shortage of modern agile develop-
ment experience.

The Netflix dilemma

I read a lot. I frequently use the things that I read to form the basis 
of a hypothesis which, in turn, will become an experiment.  If you’re 
an avid reader, especially on the technology scene, you might have 
read a book called “Powerful” by Patty McCord.  While there are a 
lot of things in Powerful that resonated with me, there were equally 
a few things that didn’t.  

There have been a few times in my career where I’ve said that while 
someone was the right person at a particular point in time, they are 
no longer right for now or where we are going.  This is a harsh truth 
of leadership: not everyone who starts the journey with you will be 
there at the end. 

Sometimes people are super happy doing as little work as possible 
and when you ramp up the pace, they get very unhappy that the 



70 Epic Failures in DevSecOps

ground has changed beneath them.  Some people like to be just a 
number cranking out a couple of Jira tickets. I knew a guy like that, 
being in a high performance team just wasn’t his thing.

The ‘everything is shit guy’(or girl), do you know them? Have you 
been them? I certainly have, borne of lack of action when I said 
something was wrong and proposed a meaningful solution.  It’s a 
cardinal error for you to know something is wrong but do nothing 
about it.  Honestly, every time I’ve heard that line it drives me crazy.

Hell, last night I was talking to my girlfriend before bed and she was 
telling me about a dressing down she got from her manager.  She 
works in a retail role, she’s the assistant manager and, like a lot of 
retail positions, it’s at a small concession. They have a high turnover 
of staff.  This can be attributed to University and a preference for 
part-time workers.

My girlfriend told me she got a dressing down for charging the price 
on an invoice for a battery replacement rather than the price plus 
postage.

I said to her, “Why don’t you email head office and tell them to 
add the postage price to the invoice so people won’t forget or have 
to remember this stuff.” Given the volume of staff turn over, I had 
assumed  this would happen quite often and this process knowledge 
can get lost over time or, in this case, simply forgotten.

She said to me, “But they won’t change anything.” In itself, this 
speaks volumes about the company culture.  I said to her, “At least 
if you send them an email and they say no, you’ve held your self to 
your own high standards and principles rather than lower yourself to 
someone else’s”.

To me this is a core point to call out, it’s so easy to be like water and 
go with the flow but all you’re doing is lowering your own standards 
and taking the easy road.  If you give people power, ask them to be 
agile and they tell you something is broken and you ignore them, 
they will become disenfranchised.  You will birth a ‘Everything is 
shit’ person (or worse, team!).



Chapter 4 – The Tale of the Burning Programme 71

This programme has a lot of people who are past their sell-by-date, 
lack technical discipline/experience/relevance, it also has many 
chiefs, hardly any indians and people are used to talking in abstract 
rather than in actions.

You’re a purist

I pretty sure that at this stage of my life I’m a pragmatist.  Yet here I 
am with the programme lead being told I’m a purist for suggesting 
replacing a technology at this late stage.

Now coming back to this point about testing and good testing, if 
you’ve chosen technologies that are difficult to work with, verging 
on unmaintainable, incredibly difficult to test and violate the do not 
repeat yourself rule an awful lot, this is one of the few times I will 
suggest replacing a technology.

Don’t use a Barracuda firewall when no one knows how to maintain 
or set one up, use the cloud native solution;  Application Gateway 
on Azure, Cloud Front + WAF on AWS or maybe a combo of Cloud 
CDN, Amour and Global Load-Balancer on GCP.  Don’t pick tech-
nologies that sound like the right thing because they were the right 
fit when used on-premise.

Now don’t get me wrong, maybe you have a legit requirement for a 
Barracuda, but I hope that hasn’t come from some ancient security peo-
ple who just don’t get it anymore and should have been recycled with 
yesterday’s milk.  You don’t get to sit back when you’re in security, you 
don’t get an easy ride.  Security is a moving target and it never stops.

If I pop my CTO hat on for a moment and think about the sort of 
engineering profiles I will need to hire, having to get someone with 
Azure + Barracuda seems stupid if there is an Azure native solution 
available. I can just hire a standard Azure engineer without increas-
ing the technical footprint of the overall engineering profile as well 
as the cost.  The technology we choose will always have longer term 
cost ramifications.  A great example of that right now is that an AWS 
Cloud engineer can be found for a lot less than an Azure or GCP 
engineer.



72 Epic Failures in DevSecOps

Seek forgiveness not permission

When I join an organisation, it’s with a particular mandate and you 
can be sure I’ll execute on that until I’m told not to.  Eventually, on 
this Titanic of a programme, we reach a point where enough of a 
picture has been painted that we can understand how to quickly go 
from A -> B.

I’m being told that things which would normally take me  one or two 
weeks to complete, will take months to achieve or need to go into a 
release next year!  As you can tell I’m not the kind of girl to take bull-
shit or ineptitude well, so making good on my mission I will stand 
up a team with the key skills I need.

“We do this, and then we can do all of these things and now it’s all 
automatic.  Quality is mandated, you can’t even contribute without 
maintaining our quality standards.” This is the mantra that person 
will live and die by in your world. Everything is simple, quality starts 
at the beginning….there are clearly times when I wonder if I’m a 
cult leader.

Let’s talk about my cornerstone, that one person who works super 
closely with me, that person who learns the narrative, to whom you 
teach that critical thinking.

In order to build a team I’m going to need them to buy into me as 
a leader and a capable team mate.  One way to do this if you have 
a existing team is to work with one person on that team and go on 
the whole journey together, that person becomes the cornerstone, 
choose wisely, they need to be a team player, choose Mr. Solo and all 
of that great work will remain in their silo of one.

If I can take one person all the way to that epiphany moment where 
they can articulate why the architectural design plus development 
process is wrong and, give them the tools to do it the right way, 
finally we do it the right way, albeit just a tiny slice.

We constantly reinforce our point, by referring to the work done by 
our Systems Integrator.  It took us 5 minutes to build and ship that 



Chapter 4 – The Tale of the Burning Programme 73

docker image and Kubernetes deployment, the SI currently takes 2 
days...cue the funny look and “Wait, everything you did was so sim-
ple,” comments.

Taking control of the narrative

The trick with wrangling back control of the narrative is to tell a 
compelling story in such a way that if anyone is to merely drift from 
your story line the very notion of anything else seems stupid, we call 
this framing.

Apple is very good at framing.  By setting the frame, they can control 
the bounds in which you operate.  We might have an S year when the 
only thing that really changed is the phone got a better camera, but 
oh boy can we talk about the camera for an hour and a half.

You probably want to deliver this like an eight count dance routine, 
click those fingers girl! Make it snappy. If you give people a moment 
to think, they will.  Keep hitting them with progress.

So let’s take the story of a nodeJS microservice and it’s 8-count:

1. Npm test
2. Pre-Push Hook run Lint & Test
3. Push Branch -> CI 
4. Raise PR -> CI -> Merge
5. Release Management deploys into development
6. Kubernetes rolls new container into service
7. Service logs to elastic search
8. ChatOps bot pipes into slack channel

How long did that take? Minutes.  When I show you this I’m going to 
carefully narrate the experience. I know how long those docker image 
builds take, especially on a freshly built host with no cache and I have 
an equally long explanation to fill your mind with my narrative.

Before you know it, we will have taken a new line of code through its 
journey from local machine, to repo, to pipeline, to release management, 
into its new home in development and confirmed its observability.



74 Epic Failures in DevSecOps

Now, with your head filled with my story bound within the frame 
we defined, I’ll draw that quick comparison to the 3-month deploy-
ment, even the   3-day deployment, versus what we just built and, to 
boot, we built that from scratch in 2 weeks, while teaching a team of 
people to do the same over and over again.  We taught men to fish 
and caught enough to feed the town, a massive success story that we 
can tell over and over again as a legend.

This is a campaign of hearts and minds.  After 18 months of failure 
not only have we succeeded, we’ve invited you to join us and watch.  
We want to show you what we have built and how we have done it.

I didn’t magically fix a whole programme or even every single com-
ponent, but I did set a clear boundary to tell a specific story, a pow-
erful software development story, one with a beginning and an end.

Don’t underestimate the power of this cultural shift. We’re inverting 
everything about how our Systems Integrator is working with us.

The narrative says we now have a internal team that is capable of a 
quality software development process.  That team was able to take a 
small shim of functionality that was originally written as 15 Logic 
Apps on a Azure Service Bus, replace them with four well defined 
microservices with incredibly strong testing and well defined cou-
pling.

Turning a corner

Repeating success brings affirmation that we’re doing the right thing.  
Being able to crank out new microservices in our own development 
capability was huge.  

People started to tell me how they had seen changes in people in my 
team, that they were smiling and talking about how much they loved 
what they were doing.  Suddenly people are being actively told to 
come over and look at what these guys had built.

You can’t underestimate how big this paradigm shift was for the busi-
ness, to spend 18 months without playbacks of sprints, or features 



Chapter 4 – The Tale of the Burning Programme 75

developed when suddenly this team from nowhere begins asking 
people to come and look at this story we were now able to tell.

Things that I wish I could fix but couldn’t

Product

I wish I could have brought someone phenomenal into to run prod-
uct. Sarah Longhurst & Colin Houlihan are two of very best product 
people that I have ever worked with.  I’ve always seen them as prod-
uct first and domain knowledge second.  Both have taught me vast 
amounts about delivering tech as a product.  One unyielding point 
from Colin was about what moves the needle for the business, the 
metrics that matter, how we measure and track them, using them to 
inform and set the tone/direction of development.

I won’t go into how to run product because it would easily fill a 
whole book and I’d need a lot of help from people who are much 
more talented than me. While I run my team like a product-centric 
team, I’m sure there is a lot that I still need to learn about product.

One of the core failings of this programme was that the product was 
so distant.  At some point, core deliverables had been defined early in 
the process. I’m not sure how you can really know all of those up front.  
These were enshrined in a contract with the supplier.  Then the product 
people would leave the scene and pick up again during testing...w00t!

Product is the nucleus and development are the electrons. Product 
guides us every day. We should all be watching the metrics under-
pinned by our product. These are normally business aligned, trans-
actions, conversion etc. If you’re the platform team, maybe you’re 
watching feature request volume, average build queue depth/wait 
time and platform availability.

Development is Dev, Sec, Test, Ops

My major frustration with this programme has been the language 
used to define development.  Development means more than writ-



76 Epic Failures in DevSecOps

ing code. It means ownership of testing, security and the deploy-
ment work.  When I first heard that it took 3 months to deploy, 
that in itself told me a lot about the mentality of the development 
team.

During discovery, I’d talked to the majority of developers or at least 
the people we had access to in the UK.  When I asked them if they 
knew how to test or if they were experienced in testing, the answer 
was a resounding “yes”.  My follow up bonus question is as predict-
able as a bull charging a matador, “Why aren’t you testing then?”.  I 
won’t dignify this chapter with their answer. Needless to say, it wasn’t 
acceptable.

As a developer, you have a personal responsibility to practice your 
craft properly and at a high level.  That means you own testing. Abso-
lutely nothing should be getting pushed to master without 100% 
coverage and an adequate amount of negative testing.  

But Wait! There’s More!

Wait! Don’t stop there. In fact, I hope you thought about this first: 
attack vectors.  Test for those too. Is your server spewing out “X-Pow-
ered-By” headers?  Are you validating schema payloads?  Are you 
whitelisting non-alphanumeric characters?  Know and understand 
your security vectors and test against them, both unit and integration 
as well as external.

I cannot overstate my level of frustration with the head of develop-
ment everytime I would demonstrate what good testing would look 
like for each component only to hear him wax it up as version 1.2 or 
1.3 ‘nice to have’.

Let me tell you something about not testing.  

Not testing works great right up until you have to change one thing. 
Then you’ll KNOW what creek you’re floating down without a pad-
dle!  When you’re not testing, you’re constantly moving forward 
which is why it works. You never have to go back and make sure 
everything still works.



Chapter 4 – The Tale of the Burning Programme 77

When you start to change anything the untested house of cards 
begins to fall. Personally, I always find good testing also helps with 
DRY (Do not Repeat Yourself ) violations; if you find yourself copy-
ing and pasting tests, that’s a good argument to move that code and 
the tests to somewhere shared.

Culture

The lack of a transparency was absolutely brutal.  With develop-
ment locked away in two rooms with the doors always closed, 
could you imagine an environment less conducive to engagement? 
There were no flow walls anywhere, and no Kanban boards any-
where. During discovery no one knew what development was actu-
ally working on.  Everything I hold dear to good development was 
thoroughly broken.  

Being contractually restrained when it comes to fixing development 
was one of the most painful, and sometimes emotionally distressing, 
times I’ve had as part of my work  for a long time.  It’s given me 
a couple more questions to ask when I interview with prospective 
clients.

I am happy with the culture that we stood up within my team.  I can’t 
tell you how many times I said ‘I’ve never done that’ or ‘I don’t know.  
It’s really important that you have a welcoming attitude that makes 
things like that OK to say.  Development and maybe other areas 
of technology have a long history of learned behaviors that need to 
be unpicked.  Behaviors that don’t foster a nurturing environment, 
don’t promote pairing.  Behaviors that are simply unhealthy for good 
software development and promote a solo player culture.

A quick mention on the subject of RockStar developers; there are a 
lot of mixed feelings towards the subject.  I guess it depends on your 
definition of RockStar.  It would seem to me that a lot of people use 
it in the negative, a toxic, self centered, solo developer, that doesn’t 
play well with the team and is a bit of a diva.

I’ve met some genuine Rock Stars in my career.  Leonardo Fernandez 
Sanchez is one of them. Leo not only had the infinite patience for me 



78 Epic Failures in DevSecOps

when I was nowhere near as good developer as him, but he also put 
up with my tears in the first year of hormones. 

I’ve honestly never felt more stupid than having to learn a new test-
ing framework on the fly with someone who knows it so damn well.  
Leo reminded me it took a long time for him to become an expert 
or even look like one.  Testing isn’t a skill we practice consistently, 
we become great coders by doing it all the time.  I know Leo would 
remind me to tell you dear reader that practice is what we all need, 
to achieve mastery.

I think that was personally a very hard year for me.  The first year 
of living full time as a woman, first year of hormones, not only was 
I lacking confidence as a woman but I’d lost confidence in myself 
technically more than a few times.

I remember a great point Leo made about squash vs not squashing. 
Take into account your rollback strategy.  One commit will be a lot 
easier to unpick than multiple commits.

My favourite Leo quote is ‘We optimise for deletion’, a line never 
more welcome than when I’d spent 2 days listening to someone 
berate my code within earshot. I ended up crying uncontrollably and 
felt so hurt personally, all I could think about were the evenings I’d 
put into that feature because I cared and enjoyed the problem I was 
solving. He reminded me that while yes slagging of someone’s code 
when they can hear is bad, accepting that when someone improves 
on, or replace/delete code is a good thing.  Accepting that means 
you’re out for the team and not yourself.

C-Level Engagement

For all the CIO, CEO, CFO, CxO’s out there, I wish I could help 
you to see the love we have for this programme, all the people that 
want to help realise the original objective.  Alas, you are protected 
by so many levels of self-serving executives I couldn’t find the right 
vector to engage you.  I wanted you to know what a massive impact 
it would have on my team if you came and walked the board with us.



Chapter 4 – The Tale of the Burning Programme 79

If the programme exists to help the business achieve the objective 
you guys lay out, then isn’t it a powerful message when you come 
and find out from the people at the coalface how your programme 
is performing?  Come and tell us how important that objective is to 
your strategic objectives. 

Equally, if you ask us how things are going, that sends a powerful cul-
tural message.  “Communications are open!” I’m knocking at your 
door saying “Hey buddy, what’s the news, how you doing?”

I think it’s always interesting when engaging with your execs.  Your 
success can depend on a number of factors.  A technology transfor-
mation can and will touch the entire business which means a huge 
part of transformation is the hearts and minds piece.

If you’re being directly engaged by C-Level execs, then you might have 
that explicit trust already.  With an established track record, the buy in 
at top level is already there and it’s about everyone else below C-Level.

If you’re being engaged by someone below C-Level, then we might 
need to do a couple of greenhouse size experiments in the middle 
of the business. We can get a few wins under our belt, increase the 
appetite for a bigger risk profile and get those C-Level execs onboard 
for the rest of the journey.

Either way, executive sponsorship is crucial to the success of any 
transformation programme.

Recognition

The great work my guys have done needs much recognition, not only 
because I know how hard it is to measure up to my standards (and 
how hard they try to meet them), but because they have risen to the 
occasion every time, even in the face of insurmountable self-doubt.

I am proud, like a mother. Proud of my work family and I need to 
reward them.   This is maybe less aligned with what I’ve read about 
Netflix culture and more aligned with Google and Facebook, but I 
just do things a different way.  



80 Epic Failures in DevSecOps

Sometimes it’s not a huge thing that you need to do to show thanks. 
We did so much work on this project with Windows Subsystem for 
Linux and while that was great and an interesting experience, work-
ing through the pain I wasn’t feeling on MacOS was a little unfair.

How much would it cost the organisation  to get them a MacBook? 
Not much.  Sticker that bad boy up.   They know the development 
flow at this point, and work predominantly in the CLI anyway.  
It’s not a traditional gift, but honestly, that would have made their 
month! Not only does the team feel great and get recognition from 
the business, but we potentially save a ton of man days of churn.

Recognition is a two-sided thing. I want the guys to genuinely see 
the contribution they have made because we are our own biggest 
critics when it comes to measuring our improvement.  Then there’s 
the other side of the coin which is me, your co-creator, your  partner 
in crime. The person telling you that you can do all of these things 
that you don’t believe.

I want….strike that, I need you to understand that this doesn’t work 
when I’m a one girl army.  It works when we are a team and I can rely 
on you.  When you bring that to the table it honestly makes my day  
When I see you happy it makes my day. I want you to enjoy working 
with me even more because I’m enjoying working with you.

Wrapping up

It’s been a crazy journey... so many technical missteps, so many char-
acters.  I think if I had to leave you with a couple of core take-homes 
it would be these.

If you’re doing Scrum-But, Wagile, Fragile or some other crap, just 
stop.  Stop the lies, stop the fallacies, and go all the way back to the 
basics.

Define done! If you have 8 environments, then your definition of 
“done” is that it’s in production.  You don’t need to turn it on, but it 
should be shipped and ready to go.  



Chapter 4 – The Tale of the Burning Programme 81

If you have test and QA in the mix then that is included in “done”  
Operating as a single body is imperative to your success.  If part of 
the process is letting you down and your 1-2 week cycle is taking 
3-4 weeks, then you are now all invested in improving the flow or 
removing those environments or shifting those who lag behind left.

Works-in-Progress limit of one. Use a Kanban board. Take a single 
feature and run that through as a mob until it’s done! You need to 
understand what your cycle time looks like, and how long does it 
take you to get a feature through to done.

This exercise is about honesty.  How long does it take us to actually 
do something vs our estimation.  How effective are we as a team at 
building something?  Are we working with product owners properly?  
Does product know how to work with development? You don’t have 
to absolutely follow any methodology, but being able to run Kanban 
and conclude accurately what your cycle time looks like, is a power-
ful exercise.

The best thing about agile is how quickly we can manifest value.  The 
smallest exercise can make a difference.  If you have zero percent test 
coverage, then add 1% and you are getting better. It’s addictive and 
you can build on it.  That is a change you can make immediately.

The Outcome

So what happened in the end? Well, with all of the fantastic work we 
did, circulated, popularised, and framed, we had enough collateral 
& trust with the business to go into the development business inter-
nally for ourselves.  We hired a few more fantastic people with expe-
rience who had an absolute fetish for testing and #TestInProduction.

We ditched the service bus idea until it was needed and just built a 
set of robust API’s with great logging and observability.  We phased 
out the system integrator’s efforts and asked them to call our micro-
services instead.

While there were plenty of things that didn’t work, we never saw 
regression in any of our code.  Releases took minutes and we saw as 



82 Epic Failures in DevSecOps

many as 30 per day.  We stopped hearing about regression packs and 
started getting compliments about our robust testing.

Agile is great, follow it and you will produce equity.  You can use that 
for experiments & mistakes or bank it for a later date. It represents 
the trust the business has placed in you to do well by it.

Be bold.  Lead change.  Build honesty and transparency into the 
DNA of your culture.



Chapter 4 – The Tale of the Burning Programme 83

About Aubrey Stearn
I’m Aubrey. If you’re in the DevOps scene in the U.K., you might 
have seen me about sweating on stage. I love what I do, I love the 
DevOps movement and more than anything I love my own brand 
of DevOps which is a completely picture of code to done with dev 
owning the whole process. I’m also transgender, 6.8ft tall and an ex 
cage-fighter.



84 Epic Failures in DevSecOps



Chapter 5

Th reat Modelling – 
A Disaster

by Edwin Kwan



86 Epic Failures in DevSecOps



Chapter 5 – Threat Modelling – A Disaster 87

Chapter 5
Threat Modelling – A Disaster

This is a story about how, regardless of the best intentions of 
all involved, we got it very wrong before we managed to get 
it right. It’s a story about one aspect of our journey to “shift 

security to the left”.

Background

We started life as a sort of “quasi-bank”, a financial start-up focused 
on merchant card payments processing services for small to medi-
um-sized businesses. We provided payment terminals to our mer-
chants so that they could accept card transactions (such as credit and 
debit cards) from their customers.

The founders were three engineers and we had a relatively large devel-
opment team.  We had built our own payments platform and the 
ownership of our own technology was seen as a competitive advan-
tage.   From very early on, the engineering team had adopted the 
XP agile methodology.  This encompassed practices including pair 
programming, test-driven development, and continuous integration.  

Pair programming is the practice where two people are working on 
one computer in constant conversation and collaboration. There are 
two computer monitors with their displays mirrored, two keyboards 
and two mice controlling the same computer. Within a team, indi-
vidual developers ‘pair swap’ across tasks. Depending on the team, 
the pairs can swap either every day, or every other day. It’s a very 
social way of doing software development but does not suit all per-
sonalities. Pair programming means that your code is constantly 
being reviewed by your partner and hence should have fewer errors. 
It’s also a great way to share technical and domain knowledge.



88 Epic Failures in DevSecOps

(Pair programming in action)

Test Driven Development (TDD) is where the implementation of 
any feature starts with a failing test. When applied strictly, TDD 
mandates that no code can be written unless there is a failing test. 
This may be a small unit test, a larger ‘acceptance’ test, or anything 
in between. The important thing is that all of these tests are auto-
mated and run on every build. This gives us confidence that any code 
changes have not broken any existing functionality. 

We also practice continuous integration (CI). This is where instead 
of waiting until the entire feature is developed before pushing the 
code to the master repository, we favour small incremental code 
changes. And because we do continuous integration, we also have a 
build pipeline. That means whenever code gets pushed to the main 
repository, the build pipeline is triggered. The build pipeline makes 
sure that the application code compiles and runs all the necessary 
tests, making sure that everything works and that the application is 
backwards compatible. If everything passes, a new release version for 
the application is created. 

As well as following the XP agile methodology, we also didn’t believe 
much in documentation (DRY), preferring the code itself being the 



Chapter 5 – Threat Modelling – A Disaster 89

source of truth, and preferring face-to-face communication over 
documentation. We felt that documentation was unnecessary as it 
was time consuming to create and to maintain. It too often becomes 
outdated and incorrect not long after its creation. We believed that 
if you wanted to find out about something, you could either speak 
to someone who had the necessary knowledge or look at the code to 
get the answers. This approach encourages the team to write good 
quality code that is simple and easily understood. It fosters com-
munication between teams and allows them to move fast and easily 
adapt the architecture to new requirements.

As for processes, we believed that if you want a particular process to 
be followed, it needs to be the only possible path that can be taken. 
Let me share an example of this. We wanted all code changes to be 
performed against an existing task. Since we use Atlassian’s JIRA for 
tracking all our work, we wanted all code changes to be made against 
a valid and open JIRA task or issue. We use Git as our source code 
version control system and one of the many features of that system 
is that it allows checks to be performed when changes are made. 
Those checks are called Git Hooks and we created one to enforce 
the requirement that all code changes need to be made against an 
open JIRA task. The Git Hook we created was a commit hook and it 
validates that a JIRA ID is included at the start of the commit mes-
sage when any code changes are committed. It also checks the status 
of the JIRA task, making sure that it is in a state that allows work 
to be performed against it. As such, there is only one possible way 
code changes can be made. Without an open ticket in JIRA, Git will 
refuse to commit your changes. Another example is the requirement 
that newly released versions of an application are backwards com-
patible with the version in production. This requirement is enforced 
post-commit by a suite of tests that run in the build pipeline and fails 
if the release is not backwards compatible with existing API contracts 
and database schema.

Why we introduced Threat Modelling

It all began a few years ago when we embarked on our security jour-
ney in software development. Why did we embark on this journey? 
Because of changes in the regulatory environment, we decided to 



90 Epic Failures in DevSecOps

try to obtain a “full” banking licence. Becoming a “full” bank would 
mean that we would be able to provide banking services: providing 
transaction accounts and offering loans to our customers.  

Providing transaction accounts to our merchants would mean that 
rather than having to wait a few days while funds from their card 
transactions were transferred to an account with another financial 
institution, they would be instantly available. And being able to offer 
loans would allow us to help our merchants grow their business. One 
of the pain points our merchants shared was, being a small to medi-
um-sized business, it was very difficult for them to get a loan.

However, there is an increased level of risk associated with becoming 
a “full” bank, so we had to evolve the company and our practices, 
including our risk management and application security capabilities, 
to be able to handle it. This was especially important because we had 
made the decision to build our own banking platform.

Our payments platform, which had been built a decade earlier, 
was composed of several large applications. That was how you 
built applications at the time. The state-of-the-art in technology had 
changed since then. At the point that we started building the core 
banking platform, the industry had moved on to micro-services, so 
we decided to design and build it using a micro-service architecture.

Using this style of application architecture means that instead of cre-
ating a huge monolithic application that does everything, we create 
many smaller, single function applications that work closely together.

(Example of a microservices architecture diagram. Note: The con-
nectivity between services in this diagram was done by a colleague’s 
daughter, who scribbled/drew the lines between the boxes.)

The first thing we did was to get some consultants in to obtain a 
baseline security assessment of our SDLC (Software Development 
Life Cycle), or as we would later refer to as our “SSDLC” (Secure 
SDLC). For the assessment, we decided to benchmark ourselves 
against the guidelines for “secure software development” set by the 
country’s financial regulators. One of those guidelines said that we 
needed to consider security at every stage of our SDLC. 



Chapter 5 – Th reat Modelling – A Disaster 91



92 Epic Failures in DevSecOps

“a regulated institution would include IT security consid-
erations throughout the software development life-cycle 

including requirements-gathering, design, program-
ming, testing and implementation phases.”

We couldn’t provide the assessor with a document that described our 
software development process. That was because we had not docu-
mented them. 

We also had no systematic way of addressing security in our applica-
tion development, with every team having different skills and doing 
different things. The assessor found that some teams might think 
about security during the design and requirements-gathering phase, 
and others during the testing phase. Or sometimes security might 
only be considered during the implementation phase, such as when 
the engineering teams are looking at firewall rules. It really depended 
on the individuals within the teams; some were more security-aware 
than others. As a result, the assessor found that there wasn’t a con-
sistent approach between the engineering teams as to when security 
was considered. 

So, when we received the assessment report, it came as no surprise 
that it reported a lack of a formalised and consistent mechanism for 
considering security throughout our software development life-cycle. 
It was sad reading. Along with the report was an action plan. It pro-
vided a road map of a set of recommended actions to take to make 
the necessary improvements in three time frames - immediate, short 
to medium, and long-term. One of the short to medium actions was 
to document and socialise the software development life-cycle and 
ensure that security is included in each phase and in the definition 
of done. A long-term strategic action item was to provide training to 
teams to ensure that they are able to conduct security threat assess-
ments and understand the risks faced by the applications.

We saw value in implementing the recommendations and wanted to 
“shift security to the left”. We researched industry best practices for 
conducting security threat assessments at every phase of the software 
development life-cycle and decided to go with implementing the 
threat modelling process.



Chapter 5 – Threat Modelling – A Disaster 93

The Story

So, we wanted to do threat modelling. Threat modelling is 
described as an iterative process, starting in the early design 
phases and continuing throughout the application life-cycle. This 
was exactly what we wanted. We wanted security considerations 
to be taken into account early in the feature design phase and 
to be reviewed constantly. If there were any threats, we wanted 
them documented so they would not be forgotten, and future 
developers would be aware of them. And if there were any threat 
mitigations or countermeasures in place, we also wanted them to 
be documented.

After researching the various approaches for doing threat modelling, 
we decided to base ours’ on Microsoft’s threat modelling approach.

The approach

We started by creating a document explaining how our threat model-
ling process would work and what the final output should be.

Our threat modelling process could be decomposed into three high-
level steps. 

The first step was to decompose the application in order to gain an 
understanding of the application and how it interacted with external 
entities. It involved creating use-cases to understand how the appli-
cation was used, identifying entry points to see where a potential 
attacker could interact with the application and identifying assets 
and trust levels that represent the access rights the application would 
grant to external entities.

The second step was to determine and rank the threats. We used 
DREAD scoring for rating the threats. DREAD scoring defines 
a threat rating based on 5 categories (Damage, Reproducibility, 
Exploitability, Affected Users and Discoverability). A score of 1 to 10 
is given to each of the 5 categories. The final rating value is obtained 
by adding all the numbers and dividing by 5.



94 Epic Failures in DevSecOps

Th e last step was to determine countermeasures and mitigation for 
the threats. Th is involved sorting the threats from the highest to the 
lowest risk and prioritizing the mitigation eff ort.

We created a template for the threat model document and below is 
an example for a fi ctitious application.



Chapter 5 – Th reat Modelling – A Disaster 95



96 Epic Failures in DevSecOps

How we introduced it

Trying to change a team’s process from the outside is hard. To intro-
duce the threat modelling approach, we first gave a presentation to 
the security champions. We have a security champion in every engi-
neering development team. They are the most security enthusiastic 
person in the team and their role is to put on the security hat and 
ensure that teams are always considering security. The threat model 
approach was put together by a few security champions who were 
looking into what processes to include in our engineering practices 
in order to shift security to the left. Once we got feedback and sup-
port from the security champions, we presented our approach to the 
entire engineering team. We asked them to create a threat model for 
every microservice application that they owned. We suggested they 
start by creating a threat model for every new application and slowly 
work their way back and perform a threat model on all their other 
existing applications. We also asked the security champions to book 
threat modelling sessions with their teams and help facilitate every 
team’s first session.

After the presentation, everyone was on-board with giving threat 
modelling a go. The teams who were about to create new applica-
tions reached out to us to help facilitate. The other teams made plans 
to threat model their newest application while its architecture was 
still fresh in their minds.

How we thought threat modelling would be 
done

During a threat modelling session, members of the team would be 
asked to draw the architecture diagram for the application under 
scrutiny on the whiteboard. From there everyone would work to 
identify the application’s entry points, the user and roles that were 
required to access those entry points, and the external dependencies 
for the application. Next everyone would refer to the architecture 
diagram, along with the other data that had been listed out, to iden-
tify potential threats. Each threat would then be given a threat rating 
using DREAD scoring. Once the threats had been rated, the team 
would order the threats from highest to lowest. They would then 



Chapter 5 – Threat Modelling – A Disaster 97

work their way down the list, determining countermeasures and mit-
igations against those threats.

When the threat modelling session was over, the information that 
had been drawn on the whiteboard would be captured and someone 
from the team would volunteer to record all that information into 
the application’s threat model document. We would then ask teams 
to review the threat model document every time a new feature was 
planned which involved that application as well as whenever code 
changes were made as part of a security review. That way the threat 
model document would always be up to date.

What actually happened

When we ran threat modelling sessions for new applications, we ran 
into something interesting. How do you decompose an application 
that has not yet been created? How do you define entry points and 
assets for something that does not exist? As we were developing using 
agile methodologies, requirements weren’t necessarily set in stone at 
the point that engineering work started. The way we worked was 
lean and iterative and we only had user stories as our requirements. 
We knew what the application needed to do, and the design and 
architecture would evolve as we worked through the user stories. Not 
only were our requirements lean, so was our code. As mentioned, 
the practice of TDD means no production code is written without a 
failing test. And the test should not check functionality outside what 
is needed to complete the user story. We ended up with more place-
holders than content as there were a lot of sections in the template 
that we were not able to complete during the initial threat modelling 
session. The teams said that they would fill them in as they developed 
the application. 

When it came to determining threats, we found that as the applica-
tions were micro services, they all had quite similar functionality. The 
front-end applications would generally handle user input or receive 
requests from a third-party service. All applications would either 
send or receive messages to or from at least one other application 
and those in the back-end would usually have a data store. Rather 
than repeating the same code to implement all that functionality 



98 Epic Failures in DevSecOps

for each application, those common functionalities were extracted 
out into common libraries. With the common shared libraries, we 
had a standard way for doing things. Those libraries were all secu-
rity hardened and had automated tests that verified that the security 
controls were in place. When an application used those libraries, it 
would also inherit the security controls and the tests which verified 
them. Those parts of the threat model were exactly the same for every 
microservice. 

We also ran into some difficulties with threat modelling legacy appli-
cations. Being legacy applications, no one in the team fully understood 
all of the application’s functionality. They were only familiar with the 
parts they had worked on. As such, we were not able to fully decom-
pose the application. We drew the architecture diagrams and mapped 
out the entry points of what we knew and focused on identifying and 
rating threats for those areas. Because we used shared libraries, a lot of 
that was pretty straight forward. We cut and pasted the standard text 
we had used in other applications that also use the same library. The 
text would say something like “We will use SSL to prevent malicious 
users from snooping traffic. Use inter-system authentication. Access 
restricted to the x network”. For the other threats that were unique to 
the application, we used DREAD scoring to determine the threat risk. 
We did not realise how hard that would be. 

There were some threats that the team could not reach consensus 
on. Should we be rating the threat taking into consideration the 
application’s location in the network? If so, did that mean that 
all internal applications, which are behind firewalls, should be 
rated low on reproducibility, exploitability and discoverability? 
What if an attacker manages to secure a foothold in the network? 
The security team decided that threats should be rated without 
taking into account any security controls external to the appli-
cation. 

This was a point of contention. Many engineering teams did not 
agree and there was always a lot of discussion around the rating for 
each of the DREAD categories. Team members were arguing about 
whether the discoverability of a threat should be a 6 or a 7. You 
wouldn’t think it was a big deal, and I didn’t think so either. How-
ever, those slight shifts in scores for each category return a lower 



Chapter 5 – Threat Modelling – A Disaster 99

overall score, which in turn gives a lower rating. A threat with a 
medium risk might have its risk downgraded to be a low. DREAD 
scoring became really dreadful. Teams had initially scheduled an 
hour for threat modelling. It usually took longer. The longest took 
three hours and that team did not even finish rating all the threats, 
let alone determine countermeasures or mitigations. They spent the 
majority of their time arguing on the threat risk rating. Everyone was 
frustrated at the end of the session. They could not reach consensus, 
they felt that they had spent too much time on it and could not see 
the value. 

At the end of the sessions, the teams would agree that some pre-
work needed to be done to document the rest of the application’s 
functionality and entry points. Once that work was completed, 
they would schedule more sessions to complete the rest of the 
threat model. At least, that was the theory. Of course in practice, 
none of that eventuated. The truth is that nobody likes documen-
tation. Threat modelling was tedious and boring. It was important, 
of course, so a task card would be written up and stuck on a team’s 
board. And there it would stay, slowly bio-degrading, because 
nobody really wanted to work on it. Eventually some were selfless 
enough to pick it up, or they drew straws. This hapless developer 
would spend some time on it and give up in dismay after a few days 
as it was monotonous work. I don’t think anyone can fault them for 
that. Some of the legacy applications have a lot of entry points; our 
internal web portal had over 370 entry points! I’m not even sure if 
that’s the largest since the other legacy applications never had their 
entry points fully listed. I would not want to be the person having 
to go through that much code to do all that work. The teams also 
did not schedule any future threat modelling sessions for their leg-
acy applications. They did not want to go through the frustration 
that they had already experienced as they felt that their time would 
be better spent doing other work.

Not long after we introduced it, the teams started having threat 
model fatigue and were avoiding it. Even if they had a good experi-
ence with a newer small application, once they tried to threat model 
a legacy application, it left them with a sour taste. Like that swig of 
cold coffee from last week you accidentally took because you forgot 
to clean the mug off your desk.



100 Epic Failures in DevSecOps

When we introduced threat modelling to the organisation, we also 
introduced a process of doing security reviews for every code change 
as a way for keeping the threat model current. That is another epic 
failure and the details for that are for another story. As a result, 
threat models were not updated when implementations changed. 
That made teams even more reluctant to spend any more time on 
them. They didn’t want to work on updating a document that was 
already out of date. In the end, most threat model documents were 
left uncompleted.

Threat modelling was an epic failure in our DevSecOps journey. 
Teams scorned it and the term threat modelling became a dirty one 
among engineers. They could not see how threat modelling, in its 
current form, was going to make their applications more secure and 
felt that they were only doing it for compliance reasons.

Attempting to improve the process

Having identified some of the pain points, we made two changes to 
improve the threat modelling process.

The first change was to generate the list of entry points from the 
application’s source code. This was done via code executed by the test 
framework that produced a table that could be copied into the threat 
model. What once took a couple of hours could now be generated 
within seconds. 

(The code that generated an application’s entry points)

The second change was to record the threat modelling outcomes in code. 
Keeping the threat model information next to the affected code would 
provide greater visibility for those looking at the code or modifying it. It 
would also make it much easier to keep the information current. 

We created annotations for defining assets, security implementa-
tions and risk assessments. The screenshot below shows an example 
of how the threat modelling Asset and RiskAssessment annota-
tions were used. 



Chapter 5 – Th reat Modelling – A Disaster 101



102 Epic Failures in DevSecOps



Chapter 5 – Threat Modelling – A Disaster 103

With both these changes, most of the threat model’s output could 
be automatically generated. We were excited with the enhancements 
and could not wait to share them with the developers.

The unexpected response

When we presented our automated threat model enhancements to 
the engineering team, we were expecting them to have a change of 
heart towards threat modelling.

Instead, they reacted to our improvements with disdain! “You’ve 
tainted our code!”, they said. “Look at the size of those annotations!”. 
The threat modelling information usually spans over a couple of lines 
and was blowing out the size of our classes. It also took up too much 
screen real estate which would slow down development. They felt 
that it would become a disincentive to have any useful information 
in a threat model or even to keep it up to date. 

We were gutted. We had invested time into those improvements hop-
ing it would encourage threat modelling. Instead, it had the oppo-
site effect. Lessons learned: we should have consulted with members 
from the development team before investing so much effort into 
something we thought they would like.

A retrospective

By the time we tried to introduce those “enhancements”, it had been 
over a year since we started threat modelling. There were still a num-
ber of applications without a completed threat model and probably 
a lot more which were outdated. It didn’t feel like threat modelling 
was improving our security posture and it definitely wasn’t shifting 
security to the left. In fact, it felt like threat modelling was making 
teams want to avoid security.

We held a retrospective with the engineering teams and also engaged 
an external consultant to help us determine if there was a better 
approach to help shift security to the left. The result from the retro-
spective, along with the findings of the external consultant, revealed 



104 Epic Failures in DevSecOps

that teams felt that there was a lot of repetition in the threat model-
ling document. All our applications use a number of shared librar-
ies which are already security hardened. Th erefore, they are secure 
by default. Teams did not want to be spending time documenting 
security controls which were standard across all applications, they 
would rather it all be automated. Th ey would rather spend their time 
thinking and discussing mitigations and countermeasures for threats 
not already covered by those libraries. 

A diff erent approach

We decided to change our entire approach to threat modelling. We 
changed it to be a suite of unit tests. Th ese tests don’t just document 
a particular security control, they also validate that the control exists. 
Th at aligns very well with Test Driven Development. We already 
use security stories when planning features. Th e security stories help 
identify any security work that also needs to be done when building 
a feature. Developers can then implement a security test as part of 
that work to test that the controls are working correctly. And because 
we have a continuous build pipeline, those tests are run every time 
an application is being built. So, we are continuously validating that 
our security controls are still in place. At the end of the build pipe-
line, if the application has passed all the tests, a new threat model is 
automatically created and published.

We spent some time creating a test framework for this and then 
invited teams and security champions to work with us to develop 
some of the common security tests. Below is an example of a security 
test that checks that the security confi gurations for a web framework 
are correctly set.



Chapter 5 – Threat Modelling – A Disaster 105

If the security test failed, it would throw an error and break the 
build. The output of the error was security-specific and provided a 
suggested fix.

Below is a sample error output:

Vulnerability:

Key: missing-hdiv-xss-protection:com.company.some-
app.controller.SomeController#some-request#5bbg13e-
a59a11a5046755d6b8021be31
Location: /someEndPoint/someAction POST
Description: Hdiv configuration permits Cross Site Scripting 
vulnerability for /someEndPoint/someAction POST
Suggestion: Remove Hdiv exclusion from configuration for this 
endpoint

If teams want to accept the risk, they can perform a risk assessment 
and add it to the application code using Domain Specific Language 
(DSL). The risk assessment would prevent the security test from 
failing and breaking the build. The main difference with this new 
approach is that a risk assessment is only needed if the threat is not 
going to be fully mitigated. This is not often the case, so teams are 
happy with that amount of documentation. 



106 Epic Failures in DevSecOps

This new approach was very well received by the teams. They were 
happy to work together with us to create the common security tests. 
One team discovered a few security test failures when they started 
using the tests and were able to quickly rectify the problems. 

We also discovered an added advantage to this new approach. We 
were able to create new security tests based on findings from our 
security penetration testing. This meant that all the applications 
were able to benefit from those findings. We were able to identify 
potential security issues earlier and address them before they went to 
production. As a result, the number of duplicated security findings 
decreased. We were truly shifting security to the left.

ThreatModelDsl.riskAssessments {
    riskAssessment {
        description “Some threat description”
        suppresses “missing-hdiv-xss-protection:com. 
 company.some-app.controller.SomeController 
 #some-request 
 #5bbg13ea59a11a5046755d6b8021be31”
        risk {
            impact MODERATE
            likelihood RARE
        }
        mitigationLevel RISK_ACCEPTED
        mitigationStrategy “Some mitigation strategy”
    }
}

Below is a sample risk assessment.



Chapter 5 – Threat Modelling – A Disaster 107

Lessons learned

We took away a couple of learnings from this. We learned that in 
order for threat modelling to be successful, we needed to do three 
things. We needed to demonstrate its value to get buy-in from devel-
opers to spend time on it. We needed to get early feedback from them 
to ensure that it will work for them, and we also needed to automate 
as much as possible to reduce the extra time they will spend on it.

When we first introduced threat modelling, we shared with every-
one what we wanted to achieve, which is to shift security to the 
left, and how threat modelling would get us there. Everyone was 
on-board with the idea and was keen to try. However, they felt 
that the initial approach was impractical. The DREAD scoring 
was dreadful and the repetition of the same controls for each 
application unnecessary. In short, they did not see the value in 
that approach. Nor did they see value in creating and maintaining 
documents that captured default security controls. Rather, they 
found value in having discussions about security concerns that 
hadn’t already been covered by the defaults. The new threat mod-
elling approach did just that. It removed all the repetition and 
allowed them to focus on the security concerns that truly matter. 
The teams were able to get behind the new approach because it 
demonstrated its value.

Getting early feedback is also key. When we started, we did not 
involve the engineering teams. We had a small number of secu-
rity champions working in isolation to design the threat modelling 
approach. Although the security champions were also engineers, they 
represented a small subset of the engineering teams. With the ben-
efit of hindsight, there were many issues with the initial approach 
that are quite obvious now. If we had involved more teams from the 
beginning, we might have discovered those issues earlier. I believe 
one of the reasons the new threat modelling test framework approach 
worked is because we obtained early feedback. We invited teams to 
join us and we were able to build something that worked well for 
them. The new approach was very well received as it aligned with 
the agile methodologies that we adhere to. If we had not gotten early 
feedback, we might not had been able to make that connection. And 



108 Epic Failures in DevSecOps

the new threat modelling approach might not have been so success-
ful. Therefore, early feedback is key!

The last lesson we learned is to automate as much as possible. I feel 
that this is especially true when it comes to security. The more you 
can automate and remove the friction, the more likely it is to suc-
ceed. In fact, automation for simplification, repeatability and speed 
is a key ingredient for “shifting security to the left”. Those we wanted 
to be involved in shifting security to the “left” already have lots to do 
and the only way to get them to look after more is to automate more. 
One thing about the new approach which I’m most proud of, is that 
the threat model documents are generated and published after every 
successful run in the build pipeline. The threat model is always cur-
rent, and it documents not what we think or want the application to 
do, but what it actually does. The unit test also automatically checks 
that the security controls are in place and provides fast and early 
feedback to developers. Doing so allows them to develop quickly 
and securely. Automating security, especially in the build pipeline, 
has helped make it everyone’s responsibility and is an important part 
of our DevSecOps journey.

Even though our initial threat modelling approach was an epic fail-
ure, the lessons we learned were invaluable. We’ve learned that we 
need to demonstrate value, get early feedback and automate as much 
as possible.

We’ve since applied those learnings in every security initiative we’re 
introduced. 



Chapter 5 – Threat Modelling – A Disaster 109

The trouble with documentation is...

... that it always ends up out of sync with reality.

Many thanks to Simon Gerber who gave me permission to share an 
internal wiki page he wrote about his company’s attempt to label the 
cutlery holders.

Somebody updated the documentation ...

Didn’t help.



110 Epic Failures in DevSecOps

About Edwin Kwan

Edwin is the Application and Software Security Team Lead for a 
bank. His approach toward application and software security is to 
raise security awareness, provide light touch controls to the soft-
ware development life cycle to increase visibility of security issues 
and work closely with engineering teams to quickly develop secure 
applications.

Edwin started out as a software engineer and transitioned into the 
application security role to lead a range of security initiatives when 
the company was working towards obtaining an unrestricted bank-
ing licence.

As a Software Engineer, he has over a decade of experience develop-
ing large scale; real-time; high performance; high reliability software 
applications for major telecommunication vendors. He is also expe-
rienced in working with stakeholders from small to large organisa-
tions to design and develop innovation solutions to help manage and 
grow their business.



Chapter 6

 Red Team the Culture

by Fabian Lim



112 Epic Failures in DevSecOps



Chapter 6 – Red Team the Culture by Fabian Lim 113

Chapter 6
Red Team the Culture by Fabian Lim

Introduction

At first, few in the organization knew what DevSecOps was. But 
after seeing how DevSecOps can benefit my organization, the tech 
leaders and directors immediately wanted all engineers to embrace it. 
One principle in DevSecOps embraces the mechanism to conduct 
tests (and breaking your own products) with the intention to be bet-
ter, faster, safer. This method is sometimes known as ‘Red Teaming’. 

‘Red Teaming’ is not just a glorified penetration test (a.k.a. pentest). 
It involves much more work BEFORE and AFTER the pentest. In 
a typical pentest, the rules of engagement are defined prior to the 
engagement and are usually limited in scope or boundary, to spe-
cific applications, machines or a certain technology. A ‘red teaming’ 
exercise differs from typical pentesting as there are fewer boundaries 
or rules. It often simulates a real cyber attack and could extend the 
scope to physical sites, humans or any other method or techniques 
this red team could engage with. However, the most crucial part 
of ‘red teaming’ engagement is the remediation. The remediation 
offered by the Red Team must be in context and relevant enough for 
the developers to understand and fix the issues easily.

From the perspective of a DevSecOps engineer working in the 
trenches, this is a story about how ‘red teaming’ brought about a 
change that is more than just technical but also the start of a long-
awaited cultural transformation as we engaged our own Red Team to 
perform a ‘red teaming’ exercise.

This journey will show how a collaborative effort between two teams 
can turn sour quickly as it was encouraging and delightful initially 
but became a relationship disaster at the end. We experienced vari-



114 Epic Failures in DevSecOps

ous push backs, hurt feelings and even the loss of trust. We wished 
that the benefi ts from ‘red teaming’ were as good as promised. Even 
with these issues, there were positive outcomes and lessons learned, 
although the price tag might have been too high. 

 Th e Story



Chapter 6 – Red Team the Culture by Fabian Lim 115

“Do ensure the pentest do not have any damaging behaviour.”

“Can you please give a heads up to system owner when doing testing?”

“Don’t create strange account name.”

“Please clean up after yourself.”

These are some reactions by my colleagues following a recent in-house 
penetration testing (a.k.a. pentest) exercise on our systems by us, 
the product security team. I thought everyone in the product team 
was cool and collaborative but somehow these bold efforts are still 
frowned upon despite being open about our objectives in the JIRA 
ticket. The mention of “pentest” will have gotten you the notorious 
reputation.

I am part of the above mentioned one-pizza-size product security 
team within the larger product team. I am also a developer in the 
product team so my world is a union of security and DevOps - 
DevSecOps. A year ago, due to inadequate manpower and resources 
within the product team, we leveraged resources in another depart-
ment, a separate Red Team, to perform a ‘red teaming’ exercise on 
our product team. The Red Team was formed recently and consisted 
of cybersecurity experts with various specialized skill sets. They were 
also looking for their first engagement to refine their ‘red teaming’ 
processes. So, after two years of peaceful product design and devel-
opment, our product was months away from launch and this exercise 
can also fulfill the compliance check box. It was thought to be a win-
win situation.

Developers were used to annual pentests, but this ‘red teaming’ exer-
cise was something novel to the team. Some of us thought that it is 
just another pentest but it is not. For the most part, pentest deals 
only with analyzing vulnerable code, machines, and servers. How-
ever, ‘Red teaming’ exercise expands the scope and assess human-re-
lated vulnerabilities like our processes, best practices, behaviours and 
enforcements, etc.

I knew what I signed up for when I agreed to it - a subject in the exer-
cise as I am also a developer. This exercise was announced to the rest 



116 Epic Failures in DevSecOps

of the team a few days before it was conducted but no details were 
given. Everyone was supposed to operate business-as-usual but also 
be ready for any ‘red teaming’ activities. And so it began...

The ‘red teaming’ exercise included but was not limited to, social 
engineering methods like phishing, gaining physical access to 
machines, and also installing malware on laptops.

The red teamers’ successful social engineering attempt got them 
physical access into the building. They had disguised themselves 
as some kind of external auditors doing audit checks on our envi-
ronment. The red teamers also managed to convince the developers 
to open an ‘innocent-looking’ document file from an unknown 
thumb drive which installed malware in the background that estab-
lished a program that communicated to a command and control 
server - which the red teamers hosted - to maintain post-exercise 
control over those compromised laptops. From there, they man-
aged to get constant and direct access to some of our developers’ 
laptops, which allowed them to obtain source code and other sen-
sitive information, like IP addresses and credentials, in the lab envi-
ronment. These infected machines were then used as pivot points 
to other machines in the lab and other unsecured machines in the 
same network.

Everyone, including myself, was unaware of all these events as they 
were happening. I admit I was a little jealous the red teamers man-
aged to pull off all those attacks and it was like a scene from ‘Mr 
Robot’ that turned into reality.

Our report card was out and our grades were not surprising at all. We 
knew our shortcomings and the report was just another avenue that 
stamped it on paper. In addition, the exercise discovered more flaws 
than we would like and we failed the exercise. In this meritocratic 
society, failure brings bad reputation and often leads to scrutiny. 

The main reason why the ‘red teaming’ exercise was successful is 
because we were too ready to trust authority but did not seem to 
take the extra step to verify. We took it for granted that anyone 
who walked through the ‘secured’ glass doors was authorized, let 
our guards down and submit to authority without challenging their 



Chapter 6 – Red Team the Culture by Fabian Lim 117

authenticity. Unaware, our developers submitted their laptops to the 
‘auditors’ for checks.

On top of that, there were other behaviours that were bad practice 
that were frowned upon. Some laptops were left unattended without 
screen lock for an extended time, a common user and password were 
used across almost all applications and machines - even privileged 
accounts, etc.

The red teamers had slipped under our radar and pillaged our 
resources. We did not detect or report any suspicious activities.

The Outcome

From the exercise, it is clear that the Red Team’s plan was well orga-
nized planned and beautifully executed. They did their research well 
- they knew our environment and also knew their targets.

However, the relationship between the developers and the Red Team 
turned sour in the aftermath. 

For most of the team, we were shocked not by the results, but by 
the unorthodox methods used during the exercise. The exercise came 
as a surprise for many, stirring mixed feelings. The product team 
responded with a multitude of push backs - some took it personally 
and were upset that the exercise  had ‘invaded their privacy’ (even 
though the laptops were issued by the organization as a development 
tool, never a personal device); some said that it was breach of trust 
between them and the Red Team; some will ‘never trust the Red 
Team again’; others thought ‘the Red Team should never have done 
this to us’. But few thought that this exercise was worth the effort - 
we had extra help to do security checks. It is better late than never; 
better us than the real bad guys.

Part of the reason why some felt this way was because we had per-
sonal information, like documents and credentials, and other social 
media profiles on the work laptop. People also grow feelings toward 
their laptops. Some thought that the methods used during the exer-
cise were not appropriate because now it made us feel paranoid and 



118 Epic Failures in DevSecOps

insecure about everything we do. We felt the tension in the air as 
everyone is uptight about the event even after the managers tried 
to explain the exercise’s objectives and address any concerns during 
retrospective team meetings.

As part of post-mortem investigation, the product security team was 
tasked to collect a snapshot of the image of the compromised laptops 
for forensics purposes and then restoring them to a known good 
version. However, some developers were not keen to do so. Han-
dling matters in their own ways, they formatted their compromised 
laptops on their own accord in frustration to get rid of the malware 
and restore the laptops to their desired state. In doing so, they denied 
the product security team from collecting those snapshots required 
for post-mortem investigation. In their defense, there was no formal 
post-mortem procedure and enforcement at that time and develop-
ers were not educated or never knew they were subjected to such 
procedures.

Within the few weeks after the exercise, we worked with the Red 
Team to tabulate the findings and analyzed the security risks. This 
final, joint report was very much anticipated by the higher manage-
ment as it was the first of its kind and also not a typical independent 
pentest report. But this also raised problems.

The Red Team wanted the findings reported as-is, immaculate and 
unmodified, complete with Common Vulnerability Scoring System 
(CVSS) ratings - no different from a traditional independent pentest 
report. The product team was concerned with some of the wordings 
which would make us look bad so we wanted to add justifications to 
the findings cushion the effect with a slightly less serious tone. There 
was a struggle between the two parties because both sides had their 
own agenda to fulfil. To me, it feels like another paper-pushing war 
as no one was willing to compromise.

In the report, the product team wanted to highlight that this exercise 
was conducted entirely in the ‘lab environment’. A struggle that I 
have was with the so-called ‘lab environment’. If source code were to 
be developed and tested in this ‘lab environment’ only to be copied 
into the production environment, shouldn’t we also secure this ‘lab 
environment’? In a similar way, when a nation develops any secret 



Chapter 6 – Red Team the Culture by Fabian Lim 119

program, the development ‘lab environment’ of this secret program 
is also secured and classified. They take caution that they do not 
expose any evidence at all. So why should we?

But because of this magical, untouchable ‘lab environment’ label, 
some tried to cushion or downplay the effects of the findings by 
rationalizing that this exercise was performed in the ‘lab environ-
ment’, which does not reflect the real production environment. The 
findings are only a ‘cry wolf ’ phenomenon.

The paper-pushing went on for more than a few weeks and there was 
no agreement. The pressure from the higher management was even 
more intense than before, and in order to meet their demands, the 
Red Team sent their report as-is.

This soured the relationship even further. Now, the distrust between 
the product team and the Red Team reached a higher level. We were 
told by our product team leads to ‘disengage the Red Team’ until 
further notice.

The product team quickly responded and followed up with our ver-
sion of the report - with mitigations, risk assessments, security plans, 
and justifications. And of course, this went back and forth with the 
higher management a few rounds before someone decided that this 
report was somewhat acceptable.

The product team knew that the findings had to be fixed before 
‘something major hits the fence’. Our approach towards security was 
to strike a balance between development practicality and calculated 
risk - rather than compliance to existing policies. We want to do 
what is the best for the product and for us. With this intention and 
approach, and using the report as a reference we started to convert 
the plan into tasks as we know how - creating JIRA tickets in our 
product backlog and started to prioritize them so that it will eventu-
ally get done in our sprints.

In order to complete the long laundry list of security tasks, we set 
aside a fraction of our man-hours every sprint towards fixing securi-
ty-related bugs. Trying not to repeat the mistakes, we first fixed our 
test codes. We approached new product features in a different way 



120 Epic Failures in DevSecOps

that had reviews which involved subject matter experts, like the folks 
with security expertise, to review and aid in designing secure work-
flows and models from birth rather than at the end of the implemen-
tation. We still struggle with managing the priorities of security bugs 
versus new product features. But we definitely placed more emphasis 
on having secure design and code.

We also managed to identify and fix some gaps in our processes so 
that we can mitigate some of the security risks we previously over-
looked. For example, our development laptops are now monitored 
under a mobile device management (MDM) program. 

Apart from technical debt, the cultural debt was the hardest to fix. 
Since the ‘red teaming’ exercise, everyone started to exhibit some 
vigilant behaviours. I am unsure if it is a knee-jerk reaction that sub-
sides after a while or if it will continue. So I started a mini ‘lock your 
laptop’ campaign within the team to (constantly) remind ourselves 
to exhibit good habits within the work environment. Whenever I see 
an unattended unlocked laptop, I would use the victim’s laptop to 
log in our team’s chat group and make a random attention-grabbing 
announcement. I try to do this without shaming or making them 
look too silly.

Apart from this seemingly silly constant reminder to lock laptops, 
we had minimal help towards improving the culture and behavior. 
Perhaps we did not know how. It felt like we were only slightly bet-
ter than before. The cultural debt still requires more work to get 
to where we want to be to operate effectively and efficiently as an 
organization.

On the bright side, we had requested and received more resources 
- manpower and funding - from the higher management to address 
the above technical debt. We took slightly more than a year to fix the 
issues. Now we are in a better shape than before - our code stinks less 
and there seems to be a slight shift in culture towards being more 
open to the general idea of “self-testing” and “being a target for 
testing”. I look forward to the next ‘red teaming’ exercise that will 
hopefully make another slight shift towards the DevSecOps trans-
formation.



Chapter 6 – Red Team the Culture by Fabian Lim 121

The Lessons Learned

Fix the cultural debt

The most important lesson for me is that a cultural transformation 
requires much more than a technical or a process change. It requires 
everyone to be part of the transformation and there is no one-size-
fits-all solution. In this case, the organization had introduced a new 
process (‘red teaming’ exercise) as part of adopting the DevSecOps 
transformation when more consideration could have been given to 
the human and cultural aspects of the transformation.

Cultural debt hurts everyone. The developers, who are at the end of 
the chain, are frustrated as a result of the hidden agendas and polit-
ical warfare not within their control. As a result, our productivity 
tends to drop.

Loosely speaking, culture essentially defines who we are and how to 
think and behave. By encouraging positive behaviours and habits 
in our daily work life, it will help shape a better culture. We should 
always encourage each other to keep up with the good practices, and 
sound out and improve bad ones. The mission and vision have to 
align and resonate with everyone. It is key that the business must 
align with the development and security teams to move towards the 
organization’s mission.

The fact that ‘red teaming’ had caused a slight shift in behaviour 
might mean that we have to do it repeatedly until the point that 
it becomes a norm. The Red Team might just be the catalyst that 
kick-started our transformation. If I had control over the pace of ‘red 
teaming’ exercise, I would make it happen often.

Align and prioritize with a security point of 
view

We managed to fix security issues as it comes because the team 
aligns and prioritizes security in sprints to make sure security 
moves at the speed of the product. This could not have been pos-



122 Epic Failures in DevSecOps

sible without the team and the product owner placing emphasis 
on security fixes and features. We embraced Agile principles and 
were using the SCRUM framework. It was clear that these require 
attention to avoid security debt in the future. It is better late than 
never; and better our whitehat red team got to us first rather than 
a real black hat attacker.

Build a trusted relationship with the Red Team

We had no clue who the Red Team was and how it was going to be 
conducted clearly. We were notified with an email saying: “There will 
be a ‘red teaming’ exercise for this two weeks. Be prepared.” Without 
any advice, we were clueless about what we should and should not 
do. We were clueless about the intentions of this exercise.

A successful ‘red teaming’ exercise requires having a trusted relation-
ship between the Red Team and everyone. The building of relation-
ships take time and effort and it involves everyone to make it work. 
We should feel that we are able to trust the Red Team to uncover 
the deepest, darkest secrets in the code that is out of reach for other 
independent testers.

One way to build this trust is to establish clear communication about 
what the intentions and objectives are of a Red Team and the things 
they are allowed (e.g. copy the source code, etc.) and not allowed 
(e.g. copy personal pictures, etc.) to do. This should alleviate some 
fear away from the targets and have a peace of mind that our privacy 
will be kept confidential.

A reminder on some of the best practices and behaviours should be 
communicated to ensure that everyone is on the right track before 
a ‘red teaming’ exercise. While the team leader of this exercise can-
not manage all expectations and reactions (because we are after all 
humans), we should minimise clashes, emotions, and friction.

After an exercise, there should be no blaming in this relationship 
as the main purpose is to help the organization to move towards a 
better security posture. We should keep communication open, get 
feedback constructively and give due credit to all parties. 



Chapter 6 – Red Team the Culture by Fabian Lim 123

Action and solution speak louder than words

A common mistake people tend to make is to tell others how bad 
their code is but fail to offer any constructive feedback. We should 
bring solutions to the team, not just the problems. As Ian Allison 
mentioned in his blog post1, the most important part of a red team 
engagement is remediation. 

The Red Team did not follow up with contextual or useful remediation. 
It felt like they were an arm’s length when it comes to remediation. It 
felt like they did not care to provide any relevant solution for the devel-
opers and expected the developers to find solutions for ourselves. They 
dropped a bomb on us and left. More often than not, developers do not 
understand the security jargons that security folks use. It is no wonder 
that developers had such negative reactions to the exercise. 

It is important that people with both security and development 
knowledge work closely with the developers by communicating con-
stantly, openly, clearly and directly. This communication can be facil-
itated through a common ticketing or messaging platform that both 
the developers and security folks use instead of sending emails and 
reports of ‘security speak’ nature.

Security folks may have to deep dive into the code and understand 
developers as much as developers need to understand security terms 
and risks. By working together regularly, folks earn other’s respect 
and help each other. This way, we fix not only the bad code, but also 
promote overall good coding behaviours.

How should success look like

‘Red teaming’ is effective in an organization that truly has an open 
culture and acceptable to failures and feedback. In order to engage in 
successful “red teaming” exercises, the organization must be open to 
embrace all that comes with it. Red teams should also be risk-taking 
and push or even break all kinds of (cultural, technological) bound-
aries. Merely having a red team without any cultural transformation 

1 http://www.devsecops.org/blog/2015/12/10/red-team-pwning-the-hearts-and-
minds-one-ticket-at-a-time 



124 Epic Failures in DevSecOps

will only suppress its ability into ‘yet another pentest team’ and not 
bringing it to its fullest potential. 

When ‘red teaming’ is conducted fruitfully, the feedback loop is 
constant, open and well intended. Security folks would suggest and 
contribute resources (links, code snippets and pull requests) in the 
code repository or ticketing platform that facilitate the remediations. 
Developers welcome and accept security issues as a normal bug in the 
software. Managers willingly prioritize security bugs accordingly to 
risks and understand the risks behind each security ticket. Everyone 
should be moving in the same direction according to the vision. And 
then, we can almost be sure to say that that is when DevSecOps has 
successfully shifted left and transformed the organization.

In order to reach this stage, it takes a lot of effort from engineers 
and non-engineers; security and non-security trained folks; manag-
ers and non-managers. There will definitely be friction at first but it 
is our job as DevSecOps servants to be the bridge between security 
and non-security trained, to smoothen this transformation process.

Thank You

Special thanks to Pieter Danhieux, Doug McDorman, Stefan Stre-
ichsbier, Edwin Kwan, Mark Miller for all the editing and publishing 
efforts on this chapter and book. You guys made this world a better 
place for me.



Chapter 6 – Red Team the Culture by Fabian Lim 125

About Fabian Lim

Fabian is a DevSecOps Servant, trying to make the world a better 
place. He has a deep passion for both technology and security - and 
hopes to help make the two combine seamlessly in the digital world. 
Fabian also likes to contribute to blogs, conduct workshops and 
conferences such as DevOps Days, All Day DevOps, DevSecOps 
Days with the aim to reach out to local communities with an interest 
in cyber security. His employment experiences include working for 
the cloud security team at Intuit Inc in San Diego, USA, where he 
first began his DevSecOps journey, and also for the Nectar team in 
Government Technology Agency of Singapore (GovTech). More on 
https://about.me/fabian.lim.



126 Epic Failures in DevSecOps



Chapter 7

 Unicorn Rodeo

by Stefan Streichsbier



128 Epic Failures in DevSecOps



Chapter 7 – Unicorn Rodeo 129

Chapter 7
Unicorn Rodeo

It was the largest and most cutting-edge project I’ve ever been 
on. Security was my responsibility. The application was very 
high-profile; major security problems were not an option.

On my first day, there was one squad and one microservice. Within 
a few months, there were dozens of microservices and a team of over 
120 people. 

You might wonder why I chose the title “Unicorn Rodeo” for this 
chapter. To me, this is what DevSecOps is truly about. Security 
seems at odds with DevOps and tech start-ups. How can one beat 
the competition with all these security roadblocks in the way? Mod-
ern security engineers have to be up to the challenge of enabling the 
business to move fast and be safe. Take a deep breath and mount the 
beast. Once you are on it, it will kick, buck, jump and do everything 
it can to throw you off. Two things can happen next: You fall off, or 
you stay on. If you stay on, eventually the unicorn will tolerate you.

This is a story of falling off a unicorn. But not for lack of trying to 
stay mounted. My goal in sharing this story is to help fellow DevSec-
Ops engineers avoid the same mistakes I made. And who knows, 
maybe you’ll manage to stay on it, in it and with it!

Yeehaw!



130 Epic Failures in DevSecOps

The Story

“This is going to be interesting”, I’m thinking to myself as I make 
my way to the elevator lobby. I had been asked to help secure the 
development of a very high-profile mobile banking application. This 
is my first day. 

Excitement is buzzing in the air as I got out of the elevator and 
walked towards the project team area. The project team occupied 
a quarter of an entire floor. Everything looked brand new. In fact, 
maintenance work was still ongoing which added to the vibe. This is 
how I imagined a well-funded startup, somewhere in Silicon Valley, 
would look like. Tables are arranged by squads, with cool sounding 
names. Good looking user journeys are all over the place, white-
boards everywhere, and more post-it notes than sand on a beach. 

It feels very unicorny. 

Funny thing is, I’m nowhere near America, and most certainly not in 
a tech startup. This is a bank, in South East Asia, but it looks nothing 
like the other banks here. Not by a long shot. 

I have heard that the people on this project are experts from all over 
the world and have an interesting challenge to solve. Re-write an 
entire existing application from scratch, and in a mere nine months. 

One of the project managers spots me and waves me over. He introduces 
me to the lead architect and returns to his desk. After exchanging pleas-
antries, we dive right into the architecture. Not only did the place look 
like a Silicon Valley startup, the technology stack did too. What I’ve been 
mostly seeing in banks are Java monoliths. This was far from that. 

Let’s get into the juicy details. The main programming language 
was Javascript. Node.js using the Hapi framework for the back-
end. React-native for the frontend, which included iOS, Android, 
and the web application. The Node.js backend consisted of stateless 
microservices that heavily rely on JSON Web Tokens. At a later 
stage, they would even add GraphQL. It doesn’t get more bleeding 
edge than this.



Chapter 7 – Unicorn Rodeo 131

At this point, I’m ecstatic. I love learning new things and this team 
had a great mix of experts and some new technologies that I’ll get to 
dive into deeply.

However, as the senior person in charge of securing the application, 
I realized that it was not going to be easy. Challenge accepted! I was 
energized and walked over to the backend squad that was developing 
the first microservice.

The tech lead is great, very knowledgeable, and we paired up to 
go through the code. I immediately spot a few security integration 
points; such as Hapi comes with a solid input validation library. I 
also see a few code patterns that make my hacker sense tingle. I make 
a mental note and am keen to dig deeper. I thank the tech lead for 
the introduction and ask for help to get access to the code and set up 
my local development environment.

I’m positively surprised when I get the requested access in a few min-
utes. This team really gets stuff done quickly, I like it. I clone the 
repository from Gitlab and follow the README.md instructions. 
The local development environment comes up in a Docker container 
and just like that I’m all set. 

Now that I’m up and running, I go to town on that microservice. 
After a few minutes, I confirm my suspicions from the pairing ses-
sion with the tech lead. Most of the endpoints are indeed vulnera-
ble to what is called an insecure direct object reference. It’s a simple 
issue, that requires changing an identifier. This vulnerability is very 
common and fairly trivial to identify. Trivial to identify for humans. 
Security scanners typically cannot identify it.

I head back to the tech lead and ask for a moment of her time to walk 
through the first issues. She immediately understands and we discuss 
a fix for the issue. After all is clear, I ask her how I should file this 
in their JIRA. She gives me the details, I request access to JIRA. The 
first tickets are created and assigned shortly after. 

In the afternoon, I have a session with the automation expert, who 
ran me through their pipelines. I was impressed with the amount 
of good work they had done on this. Their continuous integration 



132 Epic Failures in DevSecOps

practice is mature. Changes on certain branches would be directly 
deployed in the non-production Openshift environment. Deploying 
changes to production is also fully automated but requires a manual 
approval as a safety measure.

I can already picture integrating security tools strategically into the 
pipelines. It is all coming together nicely in my head and I feel fairly 
confident.

“Not a bad start.”, I think to myself, “Not a bad start at all.”.

The first week continued in a similar fashion. Things were under 
control, I was able to keep up with the pace of one squad easily. On 
Thursday I got asked to join a spike on the topic of Identity Man-
agement (IDM). The authentication logic of the application to date 
was mocked out and wasn’t functional yet. Because the pace of devel-
opment was fine, I had no issues joining the IDM spike. This spike 
would eventually turn into a major feature that required a lot of secu-
rity design and engineering efforts. It ended up taking up a decent 
amount of my time. Try implementing a mobile banking application 
using stateless microservices. That’s a very difficult engineering chal-
lenge indeed. But I digress, this is not what this story is about.

Most of my time was dedicated to designing the flows and use cases 
for the IDM. While being occupied, something interesting happened 
in the following weeks. Thinking back, the most accurate analogy 
would be that of the ‘boiling frog’. I was in tepid water which slowly 
started to boil. Over the span of a couple of weeks the team size grew 
dramatically. Another squad was added, then two more, then four 
more. Instead of the one microservice, suddenly there were dozens 
under active development. 

What started as a walk in the park, quickly became overwhelming. 
“How can I possibly keep up with them?” It was obvious that I 
needed more support. There was no way to catch up with the con-
tinuous progress made by the large and growing development team. 
I raised a request to create my own security squad and add three team 
members to it. It was approved quickly and allowed me to distribute 
tasks to my squad members. 



Chapter 7 – Unicorn Rodeo 133

The development team had a fast-paced development approach. That 
meant changes were made to all parts of the application on a daily 
basis. Furthermore, finishing the review of one microservice didn’t 
mean you were done with it. This became very clear one Thursday 
afternoon. 

Remember the very first microservice where I found issues on my 
first day? Yeah, that one. Guess what happened. The issue in the 
authorization logic, that was previously fixed, was re-introduced.

After creating a few microservices the team realized the difficulty of 
maintaining changes across them all. Key functionality was abstracted 
into Node.js modules. This triggered a refactor of all existing micro-
services. As part of the refactoring exercise, the fix became “unfixed”.

A significant amount of time had been spent on improving the secu-
rity of the application. However, I wasn’t confident that the reviewed 
code was still in that secure state. Source code was continuously cre-
ated at an ever-increasing rate. With an ever increasing team, work-
ing on an ever-increasing number of microservices. We couldn’t rely 
on the same approach that we had for the last couple of months. We 
had to find a way to work smarter, not harder and faster. 

“How can we guarantee that the entire application is in a good, 
secure state? And even more so, how can we verify that state on a 
continuous basis. Ideally across application environments.”

Before coming up with solutions, we had to get a better understand-
ing of what we wanted to achieve. These kinds of challenges are great 
and really get me going. I sat down in a quiet spot with a whiteboard 
next to me and started laying it all out. 

First of all, we want to catch critical security issues as quickly as 
possible. For the Node.js tech stack, this meant getting security tools 
into the pipelines. As always, quick results are preferred. That meant 
open source security scanners were the weapon of choice.

The Node Security Project had made wonderful contributions to the 
open source community. Because of them, there were some decent 
tools out there that got us started quickly. As with all open source 



134 Epic Failures in DevSecOps

tools, they require some tuning to not be too noisy. Fortunately, 
this didn’t take long. We were quickly able to establish a minimum 
security baseline. At that point, we were covered on common secu-
rity issues in Node.js code. Additionally, we were alerted if any third 
party libraries contained known security vulnerabilities.

As it turned out though, both security tools were not providing much 
value. At least not for this specific application. The microservices 
didn’t use any dangerous Node.js functionality, which is typically the 
cause of vulnerabilities. Also, dependencies were properly specified 
in the package.json. This led to dependencies being updated often, 
because of the very frequent builds. Any known security issues would 
be fixed almost instantly after a fix was released.

I considered the combination of input filtering and the architecture 
of the application. Both were pretty solid. I felt that the security pos-
ture was good enough with respect to addressing the minimum base-
line. Now this task was completed. It was time to take a look at all 
security issues that have been created by the security squad in JIRA.

It quickly became clear that most of the tickets in JIRA were authoriza-
tion issues. The same issues kept popping up all over the place. On top 
of that, we realized that the existing security tools were unable to identify 
these issues. Not even through customization. It simply wasn’t possible.

“So how do we automate that? How do we turn these security issues 
into failing tests that pass once the fix is implemented?” 

Testing was a serious activity in this project. We are talking about 
close to 100% code coverage across all microservices, end-to-end 
integration testing and a serious performance test regimen.

The only thing that was lacking was API-level integration tests for 
each endpoint in a microservice. Attempts were made by tech leads 
to achieve successful integration testing, but to no avail. There was 
nothing for us to add the security test cases to. The existing end-to-
end integration testing was triggered from the frontend. It also went 
straight to the GraphQL server, which was not what we wanted the 
tests to run against. GraphQL is certainly great, but current security 
tools are not able to deal with it. 



Chapter 7 – Unicorn Rodeo 135

“Alright, so here we are now. How do we solve this?”, I asked my team. 
“Why don’t we create security unit tests?”, someone replied. “Well, 
let’s see. We have a dozen microservices and there are more coming all 
the time. Additionally, the functionality, especially on that level, is still 
changing quite often. I’m afraid we won’t even be able to get proper 
security unit test coverage going. It’s likely going to be a pain to main-
tain that and will cause more problems than it would solve. Just imag-
ine the security unit tests start breaking builds left, right, and center.” 

Besides the obvious issues with that approach, we also wouldn’t be 
able to run tests across the entire application. Also, we were limited 
to each individual microservice. We couldn’t run tests for rate lim-
iting, which was enforced on the API gateway. We couldn’t ensure 
that the HTTP security headers stay in place. We couldn’t even test 
the SSL configuration, nor leverage other dynamic security tools in 
that scenario. It was too narrow and brittle for what we wanted to 
achieve. And let’s not even talk about maintaining that test suite. 

We needed a solution that allowed us to run security integration tests 
from a central repository. This solution should also be able to run tests 
on different security aspects of the application. Including SSL con-
figuration, API-endpoint security, and rate limiting. Additionally, I 
wanted to find a way to calculate security test coverage. I wanted to 
ensure that we had at least one security test for each endpoint, and 
could quickly get a list of new endpoints that were not covered yet.

As Lao Tzu famously said: “A journey of a thousand miles begins 
with a single step”. I felt like our journey had only just begun.

Luckily, I remembered an open source security tool that I played 
around with a while ago. It is called BDD-Security and is a smart 
combination of Selenium, OWASP ZAP, and Cucumber. It leverages 
behavior-driven-development patterns and neatly ties it together 
into a security integration testing tool. 

It supports many common security testing scenarios out of the box, 
including authentication and authorization based issues. After some 
minor customization, at least. It also wraps SSLyze, which allowed 
us to codify SSL related security expectations. BDD-Security seemed 
like it could be the perfect fit. 



136 Epic Failures in DevSecOps

Diving right in, I started writing test cases for the first microservice. 
Yes, you thought right, the one from my first day. 

The first challenge I encountered was due to the lack of documen-
tation for covering web-services with BDD-Security. Much of the 
sample functionality relied on traditional web applications. After 
hacking away for a few hours I got most of the functionality work-
ing. At this stage, I had covered all endpoints with security tests and 
could run the test suite from the command line. It still had open 
issues, those were failing as expected. “That is pretty neat!”, I mum-
bled to myself, “One down, 14 more to go”. 

Before I started with the other microservices I wanted to make my 
efforts visible to the team and embed it into the pipeline. Oh boy, if 
only I would have known the depth of the rabbit hole that I was getting 
myself into. This is a story for another time though. In short, it took 
more time than I want to admit of messing around with containerizing 
it and trying to make it work in the pipeline. A test-branch of a pipeline, 
that is. It wasn’t quite ready for prime time. And to be frank, it wasn’t 
very fast compared to the other test suites that were running in there.

Things didn’t get any easier from there. Fast forward a couple of weeks 
and I’m still fighting to get all microservices covered. I’ve committed 
hundreds of lines of code, duplication is everywhere and the number of 
WTFs per minute increased with every hour I spent. Looking at it now, 
I’ve created a monster. A monster that is written in accordance to the 
“One-Factor App” methodology, also known as spaghetti code. 

“That’s a total write off.”, I said to myself after a long, sad sigh. What 
I had created with the best of intentions was useless. It was time to 
move on. 

Even though I stopped working on it, I still couldn’t stop thinking 
about the problem. Then one day, by complete accident, I chanced 
upon something magnificent. The team had grown beyond 120 people 
by then. One of the recent newcomers had used Postman to create the 
integration test suite for a microservice. And yes, you are right - it was 
for that first ever microservice - my old nemesis. I had heard of Post-
man before, in fact, I had used it a few times. Mainly out of curiosity 
though. What I didn’t know is that Postman comes with an API that 



Chapter 7 – Unicorn Rodeo 137

supports pre-requests scripts, and fully fletched test cases. That was 
great, but the real kicker was Newman, the command line companion 
of Postman. Newman allows you to run any Postman collection via 
the command line interface, which means it runs nicely in pipelines.

It checked all of the boxes, and best of all, it was already being used 
by a squad. “This is going to catch on for sure and I’ll finally be able 
to salvage my previous learnings. It was good for something, after all, 
I knew it!”. I was beaming.

I immediately returned to my laptop, put on my headphones, tuned in 
to Brain.fm, cracked my knuckles and got started. It was one of those 
rare moments where everything just magically comes together. I made 
more progress in hours than I did in days before. I didn’t have to write 
much code either. Except for the pre-request scripts that populate the 
environment with access tokens as well as the test cases that verify the 
expected behavior. It was all in there. It was a thing of beauty. I showed 
the progress to my team and they loved it. The monster that I had 
created earlier, couldn’t be maintained by anyone but myself. This new 
set of Postman collections, however, allowed us to finally collaborate. 
Within a short amount of time, we were covering a decent percentage 
of the microservices. This was actually going to work out.

Because everything was going well, and the team did a lot of the 
heavy lifting, I became ambitious. 

I was wondering, how could we measure security integration testing 
coverage? “Wouldn’t it be great to know that all of the existing end-
points have security test cases? Wouldn’t it be even better to know 
if there are any new endpoints that haven’t been tested yet? A mil-
lion times yes!” We were storing the Postman collections, which are 
JSON files. We had access to the swagger specifications, which are 
JSON files also. My spaghetti code senses started tingling again. 

I spent the rest of that Wednesday afternoon creating a test coverage 
script. The code wasn’t pretty but I was still proud of my achieve-
ment. The script would download the swagger specifications for 
all microservices that are deployed in SIT and UAT. Directly from 
Openshift. Next, it parsed the Postman collection and created a list 
of all endpoints that were called and how many times they were 



138 Epic Failures in DevSecOps

called. Finally, the swagger specifications were parsed. This produced 
the complete list of which endpoints are currently deployed. Also, 
it tracked how many security test requests each of them had. All of 
these changes were committed to source control. This would allow 
us to show a time series of how the endpoints of the entire app have 
been changing as well as how our test cases were gradually catching 
up with the deployed endpoints. Magnificent.

The central Postman collection had over 400 requests. Running 
Newman for the entire thing still took less than 5 minutes. We 
demoed it to a few people on several occasions and received a lot of 
positive feedback.

Our security squad felt great, this was clearly providing a lot of value. 
We didn’t want to stop here. The self-proclaimed holy grail of secu-
rity integration testing was the quest for solving one-time passwords 
within the test suite. And we were going for it. A Nexmo account 
with a local number was purchased, a Lambda function deployed 
to AWS and the Postman pre-request script coded. Et voila, we had 
cracked even that nut. 

So let’s recap what we had created. We were able to see which end-
points exist in all environments, and which of them had security tests. 
We were able to test all functionality across all environments. We 
could have easily created a subset of security integration tests to work 
as smoke tests for production. We were able to run these tests in the 
pipelines. The full test suite took less than 5 minutes to run. We could 
attach failing tests in a JIRA ticket to allow developers to quickly test 
their fixes. We created a dockerized version of this central script. This 
script could be generically added into the pipeline for every microser-
vice repository. It was smart enough to understand which repository 
it was part of and run the right subfolder of the Postman collection. 
Oh yeah, and it solved freaking OTPs for you. *Boom, drop the mic*

But hang on for a moment. This is supposed be a story of Epic Fail-
ure, isn’t it? So far it sounds like I’ve been nailing it. What’s going 
on here?! 

Don’t worry, here it comes.



Chapter 7 – Unicorn Rodeo 139

The Outcome

We were a security squad within this large development team. How-
ever, the security integration testing efforts happened in isolation. 
We were the only ones keeping it up to date, maintaining the 100% 
security test coverage. While there was a lot of good feedback, the 
feedback was not from the “right” people. I was caught up creating 
the perfect solution to a problem that I thought was critical. I fol-
lowed the “build it and they will come” mantra.

I didn’t stop and think about the future of this project. Remember, 
the team grew from one squad to a team of over 120. Half of the 
time I didn’t even know who was a contractor, a consultant or an 
actual in-house developer. The team was so large and some excellent 
external consultants took the lead. I was busy making sure that they 
liked it. I didn’t even stop and wonder who was going to carry the 
torch after that initial project milestone was hit. Now, almost a year 
later, the application is still there, but most of the external people 
that helped shape it are long gone.

Sure enough, our magnificent creation and all its potential for 
goodness never saw the light of day. That’s a fail, but not of epic 
proportions. The sad thing is what happened to our central secu-
rity integration repository. The one that we maintained for months. 
When the team switched to a new source code management system, 
it wasn’t even copied over.

Understanding and respecting culture is the key to success in DevSec-
Ops. And culture equals people. DevSecOps provides a unique 
opportunity for security engineers to make a difference.  However,  
there is no room for heroes in DevSecOps. 

Finding the right team members and obtaining key stakeholder com-
mitment to security from the onset is more important than every-
thing else. Look for them from the very beginning, then the rest will 
happen. Just start slow and take them on the journey. 

“People don’t resist change. They resist being changed.” - Peter Senge.



140 Epic Failures in DevSecOps

Lessons Learned

• Don’t waste time on over-engineering a security solution. Treat it 
as small experiments that have to be validated.

• No matter how great you think your solution is, it has to be built 
for the right people.

• Spend time on identifying influential people in the development 
team that can become the security champions. Tech leads are of-
ten great security champions.

Thank You

First of all, thanks to Edwin for coming up with the idea of writing a 
book on DevSecOps to help others by sharing our experiences. 

Second, Mark without your support, expertise, and cat herding skills, 
this wouldn’t have happened. Thanks a lot for all the help and the 
great execution of the book idea. I’m also thankful for all the authors 
that came together to create this book. Together we can reach so 
many more. 

Last, but most definitely not least, my thanks go out to all the proof-
readers that helped improve my chapter. Especially, Stephen Dye, 
Vicki Gatewood, Stephen McGowan, Simon Gerber, and Veronica 
Cryan.



Chapter 7 – Unicorn Rodeo 141

About Stefan Streichsbier

Stefan began his career in Security Assurance in 2003 and has since 
performed intrusive security testing across hundreds of corporate 
networks and business-critical applications. Afterward, Stefan has 
been focused on secure application development for web and mobile 
applications, using his skills as both a developer and security expert 
to champion Source Code Analysis and Secure Application Coding 
best practice. 

Stefan is regularly conducting security workshops, security aware-
ness trainings, and frequently speaks at public events and confer-
ences. Stefan has been dedicated to enabling organizations to rapidly 
deliver applications without creating a security bottleneck through 
application security programs and DevSecOps implementations.

Recently, Stefan founded GuardRails. A security platform that 
orchestrates open source security tools, curates their output and 
makes actionable results available in pull requests.

Stefan is a co-founder of the local DevSecOps Singapore Meetup 
group that is enjoying an active and ever-growing community. Stefan 
is also one of the core organizers of DevOpsDays Singapore, DevO-
psDays Jakarta, and DevSecCon Asia.

Contact information: 
• Twitter: @s_streichsbier
• Linkedin: sstreichsbier



142 Epic Failures in DevSecOps



  Chapter 8

 Strategic Asymmetry – 
Leveling the Playing Field 

Between Defenders and 
Adversaries

by Chetan Conikee



144 Epic Failures in DevSecOps



Chapter 8 – Strategic Asymmetry 145

Chapter 8
Strategic Asymmetry – Leveling the 
Playing Field Between Defenders and 
Adversaries

Introduction

Understanding asymmetric conflict is key to building a successful 
#DevSecOps program.

In the early 70s, George Foreman was the undisputed heavyweight 
champion. None of his opponents had lasted more than three rounds 
in the ring and he was the strongest, hardest hitting boxer of his gen-
eration. Muhammad Ali, though not as powerful as Foreman, had a 
slightly faster punch and was lighter on his feet. Ali did not stand a 
chance against Foreman in the World Heavyweight Championship 
fight of October 1974. The outcome of that now-famous “rumble 
in the jungle” was completely unexpected. The two fighters were 
equally motivated to win. Both had boasted of victory, and both had 
enormous egos. Yet in the end, a fight that should have been over in 
three rounds went eight, and Foreman’s prodigious punches proved 
useless against Ali’s rope-a-dope strategy. 



146 Epic Failures in DevSecOps

Foreman, confident of victory, pounded him again and again, while 
Ali whispered taunts: “George, you’re not hittin’,” “George, you disap-
point me.” Foreman lost his temper, and his punches became a furi-
ous blur. By the fifth round, Foreman was worn out. And in round 
eight, as stunned commentators looked on, Ali knocked Foreman to 
the canvas, and the fight was long over.

The calculated endure-and-wait strategy of Ali versus Foreman’s 
impulsive, unrelenting attacks can draw many parallels with modern 
cybersecurity world. In your cybersecurity initiative, would you con-
sider yourself Ali or, a Foreman in this asymmetric conflict?

The Engineer manager would say - “Yes, I am Ali in this rumble as 
I conduct static code analysis at a regular cadence. I measure the defect 
density across my entire application fleet on per build basis and have a 
tight control of my vulnerability programs.”

The #DevOps manager would say - “Yes, I am Ali in this rumble as 
I have deployed bulletproof access management policies and a runtime 
security program that sandboxes, firewalls, and segments my workloads 
against bad actors.”



Chapter 8 – Strategic Asymmetry 147

The Threat analyst would say - “Yes, I am Ali in this rumble as I 
conduct adversarial threat modeling using honeypots and honeynets. I 
am a step ahead of this game”

The CISO would say - “Yes, I am Ali in this rumble as I aggregate 
my incidents in a SIEM (Security Information and Event Management) 
and throw some fairy dust of ML/AI/Deep Learning to yield actionable 
results”

This fight illustrates an important yet relatively unexplored feature of 
conflict: how a weak actor’s strategy can make a strong actor’s power 
irrelevant. Phillips, A (2012) described attacks of this nature to be 
undetectable, and once occurred, impossible to determine its origin. 
This poses a fundamental question to security professionals: 

How do we combat a threat we cannot see coming?

Compartmentalized thinking, guided by our confidence, expertise, 
bias, and heuristics puts us square in Foreman’s camp in this rumble 
as much as we think we are Ali. 

“First-principles” thinking is one of the best ways to reverse-engineer 
this complicated problem and unleash creative possibility. Some-
times called, “reasoning from first principles,” the idea is to break 
down complicated problems into basic elements and then reassemble 
them from the ground up. It’s one of the best ways to unlock creative 
potential and move from linear to non-linear results.



148 Epic Failures in DevSecOps

The Story

Hardware is increasingly being abstracted away in favor of a more eas-
ily configurable, on-demand compute and storage (e.g., software-de-
fined data centers). It is exclusively dependent on software running it 
- which takes the center stage in our times. Computer systems of today 
are increasingly built on SaaS models, as it can be developed, tested, 
and deployed more rapidly than managing and re-deploying hardware. 
This puts a large obligation on the quality of software.

Software systems can be protected by a multitude of mechanisms. For 
example, software that interacts with networks can be protected from 
unauthorized or malicious usage by firewalls, intrusion detection sys-
tems, or access control systems. In addition, software can be hardened 
against possible attacks by inspecting it, either statically or dynamically, 
to find security flaws during its development or in it’s deployed state.

The security of a system can be characterized using the intrinsic rela-
tionship between four terms: vulnerabilities, attacks, defenses, and 
policies. 

This relationship can be expressed in a sentence like, “Defenses of type 
D enforce policies of class P to protect from attacks of class A exploiting 
vulnerabilities of class V”. 

Let us deconstruct each of these terms to understand their relation-
ship 

Vulnerabilities are defects or weaknesses in system security procedures, 
design, implementation, or internal controls that can be exercised and 
result in a security breach or violation of security policy. - Gary McGraw, 
Software Security

Policies are the guarantees that a system can still give despite attacks. 
Conversely, we may state that some attack may break one or more 
policies. A customer relationship management system, for instance, 
enforces the policy that customer data is only disclosed to authen-
ticated and authorized users of the system. Thus, the policy of the 



Chapter 8 – Strategic Asymmetry 149

system expresses a confidentiality property on the customer data. 
Policies can express properties in either dimension of confidentiality, 
integrity, and availability.

Attacks are directed against a system’s interface. The goal of an attack 
is always the infringement of at least one policy of a system. For 
instance, the infamous Distributed-Denial-of-Service (DDoS) attack 
flooding internet servers mostly target the availability of a system. 
However, even though the loss of availability is the most significant 
effect of such an attack, it might also be intended to break authen-
tication systems to gain access to data, and thus, breaking the confi-
dentiality of the system.

Defenses protect policies on systems from attacks. For instance, a 
firewall can protect a system from an unauthorized external access. 
At the heart of all defenses, there are three basic mechanisms: isola-
tion, monitoring, and obfuscation. Isolation describes the physical 
or logical separation of a (sub)system’s interfaces from each other 
or the environment. For example, a virtual machine is somewhat 
isolated from other virtual machines running on the same phys-
ical machine. Monitoring describes the observation of a system’s 
interfaces and state in order to enforce policies as soon as a possi-
ble violation is detected or predicted as a consequence of known/
unknown vulnerability. A firewall, for instance, observes the 
incoming and outgoing traffic of a network and, depending on the 
traffic’s contents and the firewall ruleset decides to allow or block 
network traffic. Obfuscation protects data by making it unread-
able without the knowledge of a secret. For instance, an encryption 
algorithm protects data from being understood without the knowl-
edge of the correct key.

In the design of defenses and policies for systems, the Principle of 
Least Privilege should be the guiding factor. When systems are pro-
vided with policies and the defensive mechanisms to enforce them 
that limit the privilege of the system to the necessary minimum, 
attacks are less likely to succeed or to be harmful. These defensive 
mechanisms have to be carefully considered to enforce the policies 
in an effective way and can use isolation, monitoring, or obfuscation 
techniques or a combination of either of them.



150 Epic Failures in DevSecOps

With compartmentalized thinking, we often assume that focusing 
and tuning on one such concern is sufficient to define the overall 
security posture. We might even take it further by deploying instru-
ments to measure all of these concerns in their respective silos. These 
instruments generate alerts which are then aggregated using a SIEM. 

The promise of a SIEM is to bring context to your insight and make 
it actionable. You are now at the dispense of another instrument that 
can correlate data from these engines and create a narrative to act on.

The Outcome

Yet, the outcome has led to 159,000 cyber incidents, 7 billion records 
exposed, $5 billion financial impacts (source: One Trust Alliance 
report 2018). On a postmortem study, it was concluded that 93% of 
breaches could have been prevented.

Clearly, we’ve played directly to the asymmetry and advantage of an 
adversary.

Were these instruments ineffective? 

Did we miss critical signals entangled in false positives?

Did our AI engine “CyberSec-HAL” fail us?



Chapter 8 – Strategic Asymmetry 151

Lessons Learned

The Medieval castle approach inspired defense in depth thinking. 
Defense in Depth is the simple principle that while no security is 
perfect, the presence of many independent layers of defenses will 
increase the difficulty of an attacker to breach the walls and slow 
them down to the point where an attack isn’t worth the expense 
it would take to initiate it. Defense in Depth places the core assets 
behind layers of varied and individually effective security, each of 
which has to be circumvented for an attack to be successful.

Applying defense in depth principles to our cloud instances leads to 

• Conducting static (white-box) and dynamic (black-box) testing 
in earlier phases of life cycle to measure and control defect density.

• Hardening host operating system (disabling remote SSH to host 
or IP whitelisting access via jump host).

• Setting up a firewall and web application firewall. All incoming 
requests are assessed against a set of threat patterns to make “al-
low/deny” decision.



152 Epic Failures in DevSecOps

• Logging and Auditing across all layers of fabric to trace through 
adversarial behavior.  

• Deploying honeypots and honeynets to model adversarial behav-
ior.

Attacking applications deployed within your secure fabric is a classic 
case of strategic asymmetry as applications are portals to sensitive 
data and, unknowingly, to soft belly of the internal network. 

Adversaries mainly use a broad “spray and pray” approach to oppor-
tunistically find targets, almost akin to a medieval catapult in front 
of a castle’s drawbridge aiming at destroy siege towers and other siege 
engines of the attacking force.



Chapter 8 – Strategic Asymmetry 153

Web applications and websites are the usual facades and front end of 
most businesses and organizations. In comparison to other hacking 
targets, they are easier to access and don’t need any special connection 
or tools or state-sponsored resources, and when they’re not intended 
to be used in an intranet, they can be accessed with any computer 
with an internet connection and a web browser. Exploiting common 
vulnerabilities like deserialization, command injection, XSS, and/or 
CSRF will be a trivial task and a walk in the park for script kiddies 
sitting in the comfort of their homes. 

In many cases, once websites are breached, they serve as a beachhead 
for other major attacks and allow attackers to move laterally across 
the network with insider access, to escalate their privileges, and to 
eventually gain access to more critical resources such as databases, 
co-located applications, IAM keys, etc. 

Does a disconnected/siloed defense in depth approach work? 

Let us deconstruct instruments used in each silo and speak to its 
current state and what better can be done to created a connected 
fabric.

Silo # 1: Static and Dynamic testing to discover 
vulnerabilities in early phase of life cycle

Static analysis uses the foundation of syntax tree, control flow and 
dependence flow to generate alerts about potentially vulnerable con-
ditions. However, the Intermediate Representation (IR) that is used 
to generate these alters are purged after a run cycle. 

Discovering vulnerabilities can be likened to solving a puzzle. It 
comprises of identifying and thereafter enumerating all entry points 
i.e. a way a consumer would interact with the application program-
ming interface (API). Each entry point can range from visibly mod-
ifiable parameters in the UI to interactions that are more obscure or 
transparent to the end-user. Each entry point when exercised would 
trigger a data flow comprising of a set of conditions required to serve 
a business need. Embedded within any of these flows are insecure 
states (vulnerabilities) that an adversary can manifest. Reachability 



154 Epic Failures in DevSecOps

defines how an adversary can use a modifiable parameter via an entry 
point to trigger an insecure state. 

Connected rethink: It is thus imperative that an entry-exit point 
framework has a life beyond a single run cycle. This framework is akin 
to security-as-code as it is auto-generated by accessing software and 
defines the shape of an evolving application code in terms of its work-
flow and insecure states. With proper representation (Thrift, JSON, 
Protocol Buffers) it can be archived, version controlled and accessed 
to generate value elements. Using this framework one can evaluate it 
against a predefined policies to determine negative or positive drift. 

Silo # 2: Protecting the application surface us-
ing a runtime agent or web application firewall

Web Application Firewalls (WAFs) are designed to inspect incoming 
traffic and use a set of signatures to infer intent. Depending on depth of 
configuration, it can be at worse overly permissive or at best overly pro-
tective. WAFs are primarily based on signatures (baselined from threat 
landscape) and are not tuned to adapt to application evolution. If not 
sustained, their efficacy will decay exponentially over time. 

Typically, Runtime Application Security Protection (RASP) is instru-
mented with an application. When the application bootstraps itself 
in production, the RASP technique uses dynamic binary instrumen-
tation or Byte-Code instrumentation (BCI) to add new security sen-
sors and analysis capability to the entire application’s surface. This 
process is very similar to how NewRelic or AppDynamics work to 
instrument an application for performance.

Upon instrumenting the entire surface, the agent can impose an 
inherent burden upon an application, further impacting both latency 
and throughput. These security sensors are tripped on every request 
in order to evaluate request metadata and other contextual infor-
mation. If it looks like an attack, the request is tracked through the 
application. If the attack is causing the application to enter an inad-
missible state (inferred from threat landscape or an adaptive learning 
system), it gets reported as a probe and the attack is blocked.



Chapter 8 – Strategic Asymmetry 155

Connected rethink: Using this entry-exit framework proposed in 
silo #1, a baseline observation/protection policy can be defined to 
bootstrap

• Targeted red team attack strategy
• Auto-wired ruleset for a Web Application Firewall (WAF).
• Baseline policy for instrumented Runtime Protected Agent 

(RASP) to protect against known and unknown threats. The run-
time agent monitors for imminent attack vectors leading to fun-
damental changes in observed behavior which in turn feeds back 
to augment policies.

Silo #3: Adversarial modeling using honeypots 
and honeynets

Honeypot Systems are decoy servers or systems set up to gather 
information regarding an attacker or intruder into your system. 
Honeypots can be set up inside, outside or in the DMZ of a firewall 
design or even in all of the locations although they are most often 
deployed inside of a firewall for control purposes.  The deployment 
and usage of these tools are influenced by a number of technical and 
legal issues, which need to be carefully considered.

A honeynet consists of two or more honeypots on the same network. 
Honeypots may be deployed in combination like this to monitor 
larger or more diverse corporate networks and as part of a larger 
deception detection effort.

The Bitter Harvest paper presents a generic technique to systemati-
cally fingerprint low and medium at internet scale. Attackers have a 
strong motivation to detect honeypots at an early stage as they do not 
want to disclose their methods, exploits, and tools.

Connected rethink: There is still no such thing as an impenetrable 
system. Once attackers successfully breach a system, there is little to 
prevent them from doing arbitrary harm – but we can reduce the 
available time for the intruder to do this. But there can be the foun-
dation for an “immune system” inspired approach to tackle zero-
day and known exploits. Biological systems accept that defensive 



156 Epic Failures in DevSecOps

“walls” can be breached at several layers and therefore make use of an 
active and adaptive defense system to attack potential intruders - an 
immune system. 

Modern, cloud-native platforms using distributed and elastic run-
time environments, are provisioned using cloud formation tem-
plates. Software-defined provisioning enables rolling upgrades to 
entire fabric without downtimes. 

An attacker passes through different stages to complete a cyber attack 
mission.  It starts with initial reconnaissance and compromising of 
access means. The goal is to escalate privileges to get access to the 
target system by establishing a foothold near the system of interest. 
Attackers thereafter make use of counter-forensic measures to hide 
their presence and impair investigations. The next step is to con-
duct lateral movement to the target system. This is a complex and 
lengthy process and may even take weeks. The final step is privilege 
escalation leading to exfiltration or collateral damage. 

Whenever an application is repositioned or redeployed (similar to 
rolling upgrades) all of its virtual machines are purged and regen-
erated. And this would effectively eliminate undetected hi-jacked 
machines. This makes it much harder for intruders to maintain a 
presence on victim systems which undergoes a purge process at ran-
dom predefined intervals. The biological analogy of this strategy is 
called “cell-regeneration” and the attack on ill cells is coordinated 
by an immune system. This is an effective countermeasure – because 
the intruder immediately loses any hijacked machine albeit at which 
stage he might be in a cyber attack life cycle. 

Such a biology-inspired immune system solution is charming but 
may also involve downsides. To regenerate too many nodes at the 
same time would let the system run “hot”. This regeneration should 
be informed of fundamental changes in the observed behavior of 
application state.



Chapter 8 – Strategic Asymmetry 157

Bringing it all together - One Policy to rule them all

No matter what the approach is, let us attempt to bring forth the 
spirit of DevOps to create an interconnected fabric. Let us collec-
tively expand our thinking; guided by observation and systematic 
learning. 



158 Epic Failures in DevSecOps

About Chetan Conikee

Chetan Conikee is a serial entrepreneur with over 20+ years of expe-
rience in authoring and architecting and securing mission-critical 
software. His expertise includes building web-scale distributed infra-
structure, cybersecurity, personalization algorithms, complex event 
processing, fraud detection and prevention in investment/retail 
banking domains. He currently serves as CTO/Founder at ShiftLeft, 
and most recently Chief Data Officer and GM Operations at Cloud-
Physics. 

Prior to CloudPhysics, Chetan was part of early founding teams at 
CashEdge (acquired FiServ), Business Signatures (acquired Entrust) 
and EndForce (acquired Sophos).



 Conclusion



160 Epic Failures in DevSecOps



Conclusion 161

Conclusion

Malcolm Gladwell in his book “Outliers” talks about what it 
takes, the time and focus it takes, to internalize an idea to 
make it your own. Each of these authors has spent count-

less hours working and honing their craft. Much of that time was 
spent fixing failures. Our intent by presenting those failures in story 
form is to help you create your own narrative, not by copying our 
mistakes but by learning from them, and then creating your own 
failure tales.

Is there a shortcut to learning at this level? If we are to believe the 
research, no, not even those with innate talent can master their field 
without putting in the time and effort necessary to internalize the 
failures. According to the same research, the magic number to reach 
that level of mastery is 10,000 hours. We must suffer through years 
of frustration in order to grow and form our own, individual pro-
cesses of learning.  

Let’s agree it’s not necessary for us all to make the same mistakes, 
however. We each have to put in our time, but we don’t have to all be 
breaking the same rock. Learn from others, share what you’ve learned 
and then, if all goes well, you’ll have your own failures to brag about. 

We encourage you to contribute to the DevSecOps Community 
with your own “Epic Failure”. If we’ve done this properly, you under-
stand the value of practitioner contributions and you’ll be anxious to 
get started. We look forward to seeing your first story as part of the 
growing community at DevSecOpsDays.com.

Mark Miller
Founder and Editor in Chief, DevSecOpsDays.com
Co-Founder, All Day DevOps
Senior Storyteller, Sonatype



162 Epic Failures in DevSecOps



 Acknowledgements



164 Epic Failures in DevSecOps



Acknowledgments 165

Acknowledgements

About DevSecOps Days Press
This is the first in a series of “Epic Failures” from DevSecOps Days 
Press. We’ll continue to provide stories from people and teams 
throughout the community who want to contribute their story. Join 
us at DevSecOpsDays.com to find DevSecOps events in your area 
and to keep informed on upcoming projects, such as the DevSecOps 
Maturity Model, and the next book in this series, “Epic Failures in 
DevSecOps: Volume 2”.

You’re welcome to reach out to the authors for further discussions. 
They are all available on LinkedIn and are active community mem-
bers in various forums. 

Support for the Community

We couldn’t have done this without the support of DevSecOpsDays.
com and Sonatype. They have provided funding, resources and moral 
support, making it possible to create a community environment that 
will continue to grow as the community matures.

We invite you to join our community as a practitioner and as a con-
tributor.



166 Epic Failures in DevSecOps

Thank You

This book is the work of eight author, but a lot went on behind the 
scenes to make all the pieces fit. We had over 150 people volunteer 
to proofread. As you can see at the conclusion of the chapters, the 
authors found the suggestions and comments from these volunteers 
invaluable to the refinement of their chapter.

The artwork for the project’s book cover was provided by the design 
team at DevSecOpsDays.com. We have setup a community site that 
supports various aspects of the DevSecOps Community through 
articles, resources, podcasts and forums. Please join us as we con-
tinue to grow and act as a global hub for all things DevSecOps.



Th e “Epic Failures” series is a publication of DevSecOps Days Press 
with generous support from Sonatype.




