

2 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

TABLE OF CONTENTS
Foreword	 3

Executive Summary	 4

Registries, Models, and the New
Software Infrastructure Burden:
When Growth Meets Gravity	 7

Open Source Scale Has Become a Structural Risk	 7

Registry Consumption	 9

Real Innovation vs. Synthetic Volume	 13

The Commons is Cracking	 13

What Responsible Consumption Looks Like	 18

The Evolving Software Supply Chain
Attack Surface: Malware at The Gate	 20

A Turning Point for Open Source Malware	 20

The Threat Taxonomy: What Open Source
Malware Does Today	 22

How North Korea Weaponizes Open Source	 24

The Open Source Malware Supply Chain	 28

Emerging Threats	 29

How Will Software Supply Chain Attacks Evolve?	 30

The Three Layers of Failure in
Modern Vulnerability Management	 31

The Limits of Modern Vulnerability Management	 31

The Data Layer is Breaking Down	 33

Poor Consumption Patterns Sustain Avoidable Risk	 36

When the Ecosystem Stops
Maintaining Your Software	 39

How the Three Layers Compound Each Other	 42

Modernizing Vulnerability Management	 44

From Guesswork to Grounded:
AI Agents with Real World Intelligence	 46

Version Hallucination: LLMs Hallucinate
Versions at Scale	 47

Security Improvement by Upgrade Strategy	 49

Grounding is the Missing Link	 54

The 2025 Global Software
Assurance Mandate:
Transparency as the New Trust	 55

Transparency Has Become the Currency of
Software Supply Chain Security 	 55

From Open Source Governance to
Regulatory Mandate	 56

United States Software Regulations	 58

European Union Software Regulations	 58

Other Key Jurisdictions	 60

Regulated Industries: From Obligation
to Opportunity	 60

Formats and Interoperability	 61

Open Source License Compliance
in the New Regime	 62

Bringing Policy into Reality	 62

Software Assurance as Currency	 64

Methodology	 66

3 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

FOREWORD
For most of my career, open source has run on
a simple premise: shared building blocks make
everyone faster. That is still true. What is not
optional anymore is everything that comes with
running that premise at a global, automated scale.

Open source is now the substrate of software
delivery, pulled continuously by pipelines and
rebuilt across fleets that rarely stop. At machine
speed, small inefficiencies and small risks do
not stay small. “Just one more build” becomes
billions of requests, and then everyone acts sur-
prised when the infrastructure starts to groan.

You’ll see it first in the operational reality of
the commons. The same CI/CD patterns that
make teams productive can generate massive
redundant load when caches are cold, runners
are ephemeral, or pipelines are effectively con-
figured to re-download the world. If your build
environment forgets what it did last run, the
ecosystem still pays the cost.

You see it again in the security reality. Attack-
ers target open source because it is the fastest
path to developers, and developers sit closest to
credentials, tokens, and build systems. Malware
is steady pressure on ecosystems designed for
openness. At the same time, public vulnerability
intelligence is too often incomplete, late, or wrong,
which turns prioritization into guesswork. That’s
not a tooling problem. It’s a signal problem.

And now AI is entering the loop. It can accel-
erate good engineering, but it can also scale
mistakes when it’s operating from static
training data instead of live reality. When a
model doesn’t know what versions exist or
what is newly risky, it predicts and fills in the
blank. That’s how you end up with confident

“upgrades” to versions that don’t exist and rec-
ommendations that look plausible right up until
they break your build or your policy. AI should
not guess. AI-driven velocity will overwhelm any
governance model built on “we’ll review it later.”

This report is about what happens when trust
becomes a scaling problem. The takeaway isn’t
that open source is unsafe or that teams should
slow down. It is that the ecosystem has matured
into critical infrastructure and we need to oper-
ate it like one. That means responsible con-
sumption, security controls that match modern
development, and transparency that is produced
by the build, not assembled after the fact. Regu-
lations and buyers are moving there because the
world is demanding evidence, not assurances.

Open source will keep powering innovation. The
question is whether we build the practices and
infrastructure to sustain it at the scale we now
depend on, or whether we keep acting like the bill
is someone else’s problem.

AI CAN ACCELERATE GOOD
ENGINEERING, BUT IT CAN ALSO SCALE
MISTAKES WHEN IT’S OPERATING
FROM STATIC TRAINING DATA INSTEAD
OF LIVE REALITY. GUARDRAILS FOR
AI ARE NO LONGER A NICE-TO-HAVE.

Brian Fox
Co-founder and CTO,
Sonatype

EXECUTIVE SUMMARY

4 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Executive Summary
Software supply chains have hit machine scale. In 2025, the world
did not just build more software. It reused more of it, more often.
That scale is bending the ecosystem in predictable ways. Open
source registries, now largely serving as the internet’s critical infra-
structure, are under sustained strain. Synthetic traffic and redun-
dant downloads inflate the commons, and attackers increasingly
treat open source as a delivery channel, not an afterthought.

IN 2025, THE WORLD
DID NOT JUST BUILD
MORE SOFTWARE .
IT REUSED MORE OF
IT, MORE OFTEN.

STATE OF THE

SOFTWARE
SUPPLY CHAIN

EXECUTIVE SUMMARY

5 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

THE KEY TAKEAWAYS

1,233,219
open source malware
packages logged by
Sonatype since 2019

9.8 TRILLION
downloads across
Maven Central, PyPI,
npm and NuGet

27.76%
recommended dependency
upgrade hallucination rate
observed with leading LLM

65%
of open source CVEs
were left without CVSS
by the NVD

5 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

6 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Growth Meets Gravity: Automated builds,
ephemeral environments, and larger dependency
graphs drive repeat pulling at enormous scale.
Registry infrastructure is now critical plumbing,
and the cost of operating the commons rises
faster than most stakeholders realize.

Synthetic Growth is Not the Same as
Innovation: Spam publishing, malware floods,
and CI/CD misconfigurations can inflate down-
loads and releases without adding value. The
result is wasted bandwidth, higher operating
costs, noisier signals, and a larger attack surface.

Open Source Malware is a Nation-State
Business Model: Attackers are exploiting high-
trust open source ecosystems. Malware cam-
paigns are increasingly optimized for developer
workflows, targeting credentials, CI secrets, and
build environments. State-linked activity shows
that these tactics are not just opportunistic, they
are strategic.

Vulnerability Intelligence is Failing at the
Moment it Matters Most: Teams are trying
to prioritize risk, but basic vulnerability data is
often missing, late, or wrong. That creates tri-
age failure, false confidence, and wasted effort.
When the intelligence layer breaks, security pro-
grams cannot reliably separate what is urgent
from what is noise.

Avoidable Vulnerability Consumption Persists:
Even when fixes exist, vulnerable versions con-
tinue to be downloaded at scale. Set-and-forget
dependencies, transitive sprawl, and upgrade
friction keep old risk flowing into new builds. The
problem is not awareness. It is workflow inertia
and unclear ownership.

AI Accelerates Both Productivity and Security
Risk: AI-assisted development is increasing the
speed of dependency changes, but it can also
introduce errors, such as selecting non-existent
versions or unsafe packages. Without guard-
rails and verified sources of truth, AI turns
small data quality issues into large-scale
operational risk.

Transparency is Now a Mandate: Regulators
and buyers are turning transparency into a
requirement through SBOMs, attestations, and
provenance expectations. Compliance is shifting
from policy documents to build outputs. Orga-
nizations that operationalize transparency in CI/
CD will move faster and face less friction.

Vulnerability intelligence is getting noisier and less complete just as teams need it to be faster.
AI-assisted development is also introducing a new class of risk — automation can amplify bad inputs
at machine speed. Against a backdrop of accelerating regulatory mandates for transparency, the
message of this report is simple:

TRUST AT SCALE IS NOW THE CENTRAL ENGINEERING
AND BUSINESS CHALLENGE OF MODERN SOFTWARE .

WHEN GROWTH MEETS GRAVITY

7 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Open Source Scale Has Become a Structural Risk

Open source has entered an era where
scale itself has become a structural risk. Package
registries that once measured growth in millions
of downloads now routinely serve trillions of
requests. But this growth does not map cleanly
to innovation. 2025 saw 9.8 trillion downloads
across Maven Central, PyPI, npm and NuGet, but
the majority of registry traffic today is not driven
by new applications or meaningful reuse. It’s driven
by transitive dependency sprawl, unused or aban-
doned packages, and unsustainable tooling patterns.

9.8 TRILLION
downloads in 2025 across Maven
Central, PyPl, npm and NuGet

Registries, Models, and the
New Software Infrastructure Burden

WHEN GROWTH
MEETS GRAVITY

https://www.sonatype.com/blog/from-abuse-to-alignment-why-we-need-sustainable-open-source-infrastructure

WHEN GROWTH MEETS GRAVITY

8 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Modern CI/CD systems and ML pipelines are optimized for speed and convenience, not efficiency.
Once configured, they pull relentlessly, often blind to redundancy, cost, or downstream impact. The
result is a structural burden that registries were never designed to carry alone. Public software eco-
systems are drifting toward a tragedy of the commons: a fraction of organizations and automated
systems consume a disproportionate share of bandwidth and compute while registry operators and
volunteer maintainers absorb the strain.

As software supply chains expand to include not just code, but models, datasets, and increasingly large
artifacts, the question is no longer whether open software ecosystems can scale — but who pays for
that scale, and how long the current system can hold.

FIGURE 1.1

Yearly Downloads over Time (Maven Central, PyPI, npm, and NuGet)

FIGURE 1.2

2025 Registry Growth

Ecosystem

2025 Total
Components

Added

Cumulative
Total

Components

2025 Total
Releases

Added

Cumulative
Total

Releases
2025

Downloads

YoY
Download

Growth Rate

Maven Central
(Java)

260.5k 808.6k 3.3M 24.95M 839.05B 19.42%

PyPI (Python) 214.8k 821.3k 1.54M 8.85M 804.97B 50.64%

npm (JavaScript) 749.7k 5.59M 11.18M 65.56M 7.97T 65.43%

NuGet (.NET) 144.8k 760.1k 2.4M 14.02M 223.37B 17%

10T

5T

7.5T

2.5T

0

Ye
ar

ly
 D

ow
nl

oa
ds

2018 2019 2022 2023
Year

2020 2021 2024 2025

9.8T

https://www.sonatype.com/resources/articles/what-is-software-supply-chain

9 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Registry Consumption

Maven Central underpins enterprise Java devel-
opment, and its scale means small shifts prop-
agate widely. In 2025, downloads grew 19.42%
year over year, reinforcing Maven Central’s role
as a default dependency source across commer-
cial and open source software. Maven’s growth
slowed slightly in 2025 due to sustainability
measures put in place designed to limit usage
at the highest end. At this volume, incremental
growth still produces large absolute increases
in consumption: new releases, regressions, and
vulnerabilities can affect thousands of organiza-
tions quickly.

That impact is driven as much by release velocity
as by new library creation. In 2025, more than 3.3
million releases were added, creating sustained
upgrade and governance pressure for consum-
ing teams. The operational challenge is less
“what exists” and more how to evaluate and man-
age constant version change across dependen-
cies already embedded in production portfolios.

Security data reinforces the need to prioritize
vulnerabilities in dependencies and to steer
toward the safest, fastest upgrades, not toward

unused or test-only components. In 2025, 40% of
vulnerable Maven Central releases carried CVSS
9.0+ scores, showing that severe issues are not
rare. Teams can’t control when vulnerabilities
are introduced. But, at Maven Central’s scale,
success hinges on prioritization and speed, not
additional alerts or manual reviews.

19.42%
YoY download
growth

3,312,376
releases added
in 2025

40%
of vulnerable releases
were CVSS 9.0+ (Critical)

FIGURE 1.3

Maven Central Release
Additions Over Time

5M

4M

2M

1M

3M

0

Re
le

as
e

A
dd

iti
on

s

Year

2021 20232022 20252024

2.51M
2.74M

4.49M

3.31M
3.03M

WHEN GROWTH MEETS GRAVITY

10 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

PyPI’s growth underscores where developer
adoption and dependency sprawl are acceler-
ating most quickly. With 50.64% year-over-year
download growth, PyPI reflects the surge of

modern workloads tied to AI and cloud develop-
ment. That velocity brings scale benefits, but it
also shows early signs of stress.

In 2025 alone, new component additions
accounted for 26% of PyPI’s total registry cat-
alog, a striking indicator of how quickly the uni-
verse of available dependencies is expanding.
Each new package increases choice and innova-
tion, but it also multiplies evaluation and enforce-
ment challenges. More components mean more
potential entry points for risk and greater transi-
tive exposure as teams pull in deep dependency
trees they may not fully understand or monitor.

This level of growth and breadth comes with a
clear security signal: risk is not an edge case. In
2025, one in five PyPI releases was associated
with a CVSS 7.0+ vulnerability, showing that
serious issues regularly flow through everyday
pipelines. For organizations relying on PyPI, this
makes proactive controls essential.

50.64%
YoY
download
growth

1 in 5
2025 releases
were tied to
CVSS 7.0+

~26%
of the total catalog made
up by 2025 component
additions

FIGURE 1.4

Vulnerable PyPI Release
by Severity Over Time

100%

75%

25%

50%

0

9–10 7–9 5–7 <5

Re
le

as
e

A
dd

iti
on

s

Year

2021 20232022 20252024

11 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

The takeaway is not blame, but scale awareness:
when hundreds of thousands of ‘Critical’ releases
exist in a single year, teams cannot rely on manual
review or reactive patching. Automation, prioriti-
zation, and rapid upgrade motion are essential to
keeping pace with an ecosystem where critical risk
can now propagate as quickly as the code itself.

In 2025, npm downloads grew 65.43% year over
year, and the software ecosystem produced over
60% of all new releases across major registries.
This combination of rising consumption plus
dominant release volume means npm’s impact is
less about catalog size and more about release
velocity: constant updates, republishing, and
forks increase the rate of dependency change
that consuming teams must evaluate and
absorb. At this pace, traditional manual review
and approval models do not scale.

In 2025 alone, npm recorded 838,778 releases
associated with CVSS 9.0+ vulnerabilities, a
number that reframes “rare” events into everyday
realities. This scale is what enabled watershed
incidents like React2Shell, discussed later in The
Three Layers of Failure in Modern Vulnerability
Management chapter, and Shai-Hulud to have
ecosystem-wide impact. As detailed in the next
chapter, Malware at the Gate, npm faced a num-
ber of self-replicating malware campaigns, which
ultimately added 171,740 malicious packages to
the registry over the span of a few months.

65.43%
YoY download
growth

838,778
CVSS 9.0+ releases
in 2025

>60%
of all new releases (across
these 4) were npm in 2025

FIGURE 1.5

Rate of Vulnerable npm
Releases Over Time

25%

20%

10%

5%

15%

0%

Re
le

as
e

A
dd

iti
on

s

Year

2021 20232022 20252024

11.6% 11.8%
10.6%

16.8%

21.0%

https://www.sonatype.com/blog/the-second-coming-of-shai-hulud-attackers-innovating-on-npm
https://www.sonatype.com/blog/npm-chalk-and-debug-packages-hit-in-software-supply-chain-attack

WHEN GROWTH MEETS GRAVITY

12 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

NuGet may not generate the same headline-
grabbing download spikes, but its cadence is
distinctive. In 2025, NuGet averaged 16.5 releases
per new component, pointing to rapid iteration
and steady maintenance rather than pure cata-
log expansion. This level of churn signals active
maintenance, frequent fixes, and continuous
refinement, especially common in enterprise
and platform-oriented .NET development. For
consumers, the operational burden isn’t discov-
ering “new,” it’s tracking version changes across
dependencies already in production.

The nature of risk within NuGet further raises
the stakes of that churn: in 2025, less than 1%
of vulnerable NuGet releases fell below CVSS
5, indicating the vast majority of flaws are not
noise. At the extreme end, 38.5% of vulnerable
NuGet releases were associated with CVSS 9.0+
vulnerabilities. Paired with rapid version turnover,
ad hoc patching and manual decision-making
quickly break down. What NuGet demands
instead is fast, reliable remediation mechanics,
including clear prioritization and automated
upgrade workflows.

We are no longer just measuring growth; we are
evaluating its impact. As consumption across
this unified software supply chain accelerates,
it forces a critical question. How much of this
massive consumption is productive, driving gen-
uine innovation and business value? And, more
importantly, how much is unproductive waste
that the software ecosystem can no longer
afford to ignore?

FIGURE 1.6

2025 Vulnerable NuGet Releases

CVSS 9–10
38.5%

CVSS 7–9
51.5%

CVSS 5–7
9.3%

CVSS 0–5
0.8%

16.5
releases per
new component
in 2025

~0.8%
of 2025 vulnerable
releases were below
CVSS 5

38.5%
of vulnerable releases
in 2025 were CVSS 9.0+
(Critical)

13 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Real Innovation vs. Synthetic Volume
As software supply chains scale, the impacts of
organic growth compared to synthetic growth
are increasingly distinct. Understanding this dif-
ference helps organizations focus on what truly
advances their capabilities and avoid uninten-
tionally contributing to systemic strain.

For organizations trying to manage risk and
cost at scale, the distinction matters. Synthetic
volume obscures real signals, overwhelms gov-
ernance processes, and amplifies exposure
without delivering benefits. It also shifts burden
onto public software ecosystems that were not
designed to absorb limitless, redundant traffic.

The Commons is Cracking
Public registries are global distribution systems
with real costs: bandwidth and CDN delivery
on every download; storage and replication for
every release; and ongoing investment in abuse
response, malware scanning, moderation, inci-
dent handling, and security investigations. As
open source expands beyond apps into soft-
ware infrastructure, AI platforms, and model
hubs, these operational demands keep rising.

THE SUSTAINABILITY PROBLEM
ISN’ T “ TOO MUCH OPEN SOURCE ,”
BUT RATHER CONSUMPTION
AT MACHINE SCALE .

Automation multiplies load: CI pipelines
repeatedly pulling the same dependencies,
build systems re-resolving dependency graphs,
and large organizations running thousands of
parallel jobs. Similar patterns are emerging in
AI and model hubs, where large artifacts are
repeatedly fetched by automated workflows.
Defaults built for convenience can turn routine
activity into sustained, high-volume demand.

And the demand isn’t evenly spread. A small
number of consumers, tools, and patterns
drive a disproportionate share of traffic, com-
pounding costs, reliability strain, and exposure
to abuse. When registries slow down, pause
services, or absorb malicious floods, the impact
ripples across entire ecosystems — from appli-
cation development to critical software infra-
structure and downstream AI platforms that
assume constant availability.

ORGANIC GROWTH reflects real shifts
in how software is built: AI adoption,
cloud migration, and proliferating lan-
guages/frameworks increase depen-
dency usage because teams are adding
capabilities and moving faster. It raises
complexity, but the added dependencies
generally map to delivered functionality
and business outcomes.

SYNTHETIC GROWTH inflates volume
without comparable value. Spam pub-
lishing, incentive gaming, malware, and
typosquatting can spike project and
download metrics, while CI/CD miscon-
figurations (cold caches, always-clean
builds, non-expiring mirrors) repeatedly
re-download the same artifacts. The
result is higher bandwidth and infra-
structure cost — and more risk — with-
out improving software quality.

WHEN GROWTH MEETS GRAVITY

14 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

FIGURE 1.7

CSPs vs All Users: Breakdown of
Maven Central Downloads

This isn’t a story about one bad actor or one
registry failing. It’s an ecosystem-level mis-
match between yesterday’s defaults and
today’s machine-speed reality. Preserving the
commons means updating consumption norms
and shared responsibility. Ecosystem health
now depends as much on how software is con-
sumed as on how it’s created.

THE IMPACT OF CLOUD PROVIDERS:
WHERE THE LOAD CONCENTRATES

Cloud provider traffic now defines what “normal”
looks like on Maven Central. In the latest snap-
shot, the top three cloud service providers (CSPs)
accounted for more than 108 billion requests,
while every other user combined represents
around 17 billion. Taken another way, CSPs rep-
resent just 32.5% of IPs on Maven Central, yet
account for more than 86% of downloads.

WHEN A SMALL SET OF CSPS BECOMES
THE DOMINANT ACCESS PATH TO
THE ECOSYSTEM, MAVEN CENTRAL
EFFECTIVELY SERVES AS SHARED
PRODUCTION INFRASTRUCTURE
FOR CLOUD-NATIVE BUILD, DEPLOY,
AND RUNTIME WORKFLOWS.

At that volume, small changes in cloud
build behavior (ephemeral runners, cache
churn, region replication, image rebuild
loops, cold-start fleets) can translate into
outsized swings in total registry load.

The implication for the commons is straight-
forward: registry strain is increasingly driven
by automation at hyperscale, not broad-based
organic growth. Improving cache persistence,
tightening redundant fetch patterns, and design-
ing “download once, reuse everywhere” behaviors
inside cloud delivery pipelines becomes one of
the highest-leverage ways to reduce systemic
load — because the biggest consumers aren’t
“more developers,” they’re a few platforms oper-
ating at machine speed.

All Other
Users
13.6%

Top 3
CSPs

86.4%

15 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

RE-DOWNLOAD OFFENDERS: THE BIGGEST AVOIDABLE BILL

Re-downloads are where open source sustain-
ability becomes concrete, because they repre-
sent repeat fetches that add load without add-
ing new value. In the last seven days, the heavi-
est re-download activity is tightly concentrated:
a large share of the top re-downloaders operate
behind just one or a handful of IPs, pointing to
centralized CI runners, shared egress gateways,
or build fleets behaving like cold-start machines.

The sustainability implication is that avoidable
strain on Maven Central is not evenly distrib-
uted across the ecosystem. It’s driven by a
relatively small set of automation patterns that
scale — often inside a single organization —
into repeated pulls of the same dependencies.
That makes the problem unusually tractable:
improvements like durable caching, correctly
configured proxies/mirrors, and less “always-
clean” dependency resolution can reduce
outsized load quickly. Fixing one pipeline can
remove pressure that would otherwise be multi-
plied across thousands of builds.

Overall, the story isn’t “more developers are
downloading more.” It’s that modern software
delivery is optimized for speed and rebuildability.
When cache persistence breaks down, the cost
is externalized onto shared infrastructure. The
path to sustainability is aligning build defaults
with commons realities so the ecosystem can
keep moving fast without turning every rebuild
into unnecessary traffic.

47.5%
of the top 200
re-downloading
organizations
contained a
single IP

20.5%
operate
from more
than 5 IPs

17%
exceed 1,000
re-downloads in
one week

6%
exceed 5,000
re-downloads in
one week

☑ 	 Routing CI through repository
managers or caching proxies

☑ 	 Making build and dependency
caches durable across runs

☑ 	 Pinning and reusing dependencies
where appropriate

HOW TO REDUCE
REDUNDANT TRAFFIC
WITHOUT SLOWING DELIVERY:

WHEN GROWTH MEETS GRAVITY

16 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

WHY BUILDS AMPLIFY LOAD:
THE IMPACT OF TOOLS LIKE
MAVEN AND GRADLE

Traffic patterns in large registries are not evenly
distributed across countless clients — they
are highly concentrated. In the case of Maven
Central, just two build tools, Maven and Gradle,
account for 81.1% of all traffic. This concen-
tration creates outsized implications: small
improvements in default behavior, caching
strategies, or CI integration for these tools can
materially reduce ecosystem-wide load with-
out requiring millions of individual developers
to change how they work. When the majority
of consumption flows through a narrow set of
tools, system-level optimizations become far
more effective than relying on per-project best
practices alone.

Maven and Gradle amplify registry load in different
ways, not because they consume different arti-
facts, but because their configuration and caching
models differ in practice. Gradle is engineered to
be cache-correct and CI-friendly: it aggressively
revalidates metadata, resolves dependencies in
parallel, and is commonly run in short-lived agents
or containers where caches start cold. Under
normal circumstances, much of that extra traffic
would be absorbed by a local caching proxy.

Maven Gradle

Default “down-
load behavior”

More cache-trusting for pinned versions
leads to fewer repeat fetches

More cache-correct + frequent revalida-
tion leads to more repeat GETs

Where it runs
(typical)

Benefits from long-lived machines or /
build nodes with warm local repos

Common in ephemeral CI/containers
with cold caches each run

Why this matters
at scale

Naturally dampens redundant traffic
over time

Can amplify redundant traffic unless
caching/CI reuse is strong

Best mitigation
lever

Persist local/CI caches (“download once,
use many times”)

Durable build cache + CI artifact reuse
to cut re-downloads

4.08X
more frequent re-downloads
in Gradle than Maven

FIGURE 1.8

Comparing Build Tools on Maven Central

17 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Inserting such a proxy consistently is nearly impossible to do at scale in Gradle because it lacks a
strong, hierarchical inheritance model for repository configuration. That makes it difficult to centrally
enforce a single caching endpoint without modifying every build or risking breakage. As a result, many
Gradle builds effectively (and unintentionally) bypass local caches and hit upstream registries directly,
amplifying repeat GETs for the same artifact URLs even when versions are pinned.

Maven, by contrast, has a simpler and more centralized settings model that makes proxying and mir-
roring straightforward. Combined with Maven’s more cache-trusting behavior for fixed versions and its
frequent use on long-lived machines with warm local repositories, this naturally reduces repeat down-
loads over time.

At scale, redundant downloads don’t just consume bandwidth — they increase load on the services that
keep registries safe and reliable (indexing, scanning, abuse detection, and incident response capacity).
The practical goal is simple: download once, reuse many times. Teams can cut repeat fetches while
improving build speed and reliability by adopting durable caches, shared artifact proxies, and CI pat-
terns that preserve dependencies across runs.

☑ 	 Make CI caches durable
persist Gradle caches
between runs

☑ 	 Add a shared artifact proxy /
repository manager

☑ 	 Stop “always-clean” defaults
keep dependency caches even
if outputs are cleaned

☑ 	 Standardize cache strategy
across runners
consistent paths/keys

☑ 	 Instrument and enforce
track re-download rate;
set guardrails

☑ 	 Reduce metadata churn
pin versions; use lockfiles
where applicable

DO NOW (FAST WINS) DO NEXT (HIGHER LEVERAGE)

WHEN GROWTH MEETS GRAVITY

18 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

AI REGISTRIES AS THE
NEXT STRESS TEST

AI registries and model hubs are the next major
stress test for shared distribution infrastruc-
ture. They inherit package-registry behaviors
such as automation, repeat pulls, and reuse,
but with a much heavier cost profile. Models,
datasets, and checkpoints are large by default,
often hundreds of megabytes to several giga-
bytes, come in multiple variants, and change
frequently as teams iterate. This drives higher
bandwidth, storage, and replication demands.

The risk is not just artifact size. If AI usage fol-
lows today’s norms such as CI re-downloads,
weak cross-environment caching, and hotspot
automation, load will escalate quickly. Ineffi-
ciencies that are tolerable for small packages
become expensive and destabilizing at model
scale, threatening availability and reliability.

THE TAKEAWAY IS THAT SCALE
AMPLIFIES DEFAULT BEHAVIORS,
SO SUSTAINABILITY MUST
BE DESIGNED IN EARLY.

Durable caching, artifact reuse, prove-
nance-aware distribution, and AI guardrails
to prevent unnecessary pulls are critical now,
before AI ecosystems reach package-registry
levels of global dependency.

What Responsible
Consumption Looks Like
Growth across package ecosystems continues,
along with the security and operational pressure
that scaling creates. As registries grow, more
responsibility shifts to consumers to reduce
unnecessary load, limit exposure, and keep risk
manageable. Responsible consumption is about
maintaining developer velocity without increasing
supply chain risk.

The biggest lever is architectural. Private reposito-
ries and intelligent caching should be the default.
Letting CI pipelines pull directly from public reg-
istries on every build amplifies traffic, increases
failure risk, and creates avoidable exposure during
outages or tampering events. Centralizing depen-
dency access through controlled repositories
that cache, vet, and reuse artifacts across teams
reduces churn, improves build determinism, and
narrows the impact of upstream changes.

Architecture also needs guardrails. Organizations
should set and enforce consumption policies
that reflect real usage at scale, including limits on
redundant downloads. SCA and repository man-
agement tools help by prioritizing used dependen-
cies, de-duplicating artifacts across projects, and
reducing noise from unused or unreachable com-
ponents. The goal is focus, clearer signals, fewer
alerts, and faster remediation.

Responsible consumption is also a shared soft-
ware ecosystem issue. The heaviest consumers
benefit most from public registry reliability,
so long-term sustainability requires shared
responsibility.

https://www.sonatype.com/solutions/open-source-ai
https://www.sonatype.com/solutions/dependency-management
https://www.sonatype.com/solutions/dependency-management
https://www.sonatype.com/solutions/software-composition-analysis-tools
https://www.sonatype.com/solutions/artifact-management
https://www.sonatype.com/solutions/artifact-management

19 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

CHECKLIST: ARE YOU SUPPORTING THE SOFTWARE COMMONS?

19 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Do you have internal policies or guidelines in place to minimize
unnecessary artifact publishing or republishing?

Do your CI systems use local caching or private repositories by default?

Do you have policies or guidelines around publishing internal-only
items to registries?

Do you distinguish between used and unused dependencies in your
security and governance workflows?

Do you intentionally batch or optimize releases to avoid unnecessary
registry strain?

Do you know which registries your org depends on most, and how much
traffic you generate?

Do you contribute (financially or in-kind) to the registries and OSS projects
that are critical to your builds?

MALWARE AT THE GATE

20 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

A Turning Point for
Open Source Malware
Throughout 2025, Sonatype identified more
than 454,600 new malicious packages, bringing
the cumulative total of known and blocked mal-
ware to over 1.233 million packages across npm,
PyPI, Maven Central, NuGet, and Hugging Face.
This year, we observed that the evolution of
open source malware crystallized, evolving from
spam and stunts into sustained, industrialized
campaigns against the people and tooling that
build software.

454,648
new malicious packages
Sonatype identified in 2025

The Evolving Software
Supply Chain Attack Surface

MALWARE
AT THE GATE

https://central.sonatype.com/
https://www.sonatype.com/products/language-support/hugging-face

MALWARE AT THE GATE

21 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

What stands out most about 2025 is not just the
scale of the threat, but also the sophistication.
Where 2024’s XZ Utils incident was ground-
breaking, demonstrating how a single compro-
mised maintainer could imperil global infrastruc-
ture, 2025 saw software supply chain risk evolve
dramatically.

This year, over 99% of open source malware
occurred on npm. State-linked entities such as
the Lazarus Group advanced from simple drop-
pers and crypto miners to five-stage payload
chains that combined droppers, credential theft,
and persistent remote access inside developer
environments. The first-ever self-replicating
npm malware (Shai-Hulud, quickly followed by

Sha1-Hulud) proved that open source malware
can now propagate autonomously through open
source ecosystems. IndonesianFoods created
more than 150,000 malicious packages in just a
couple of days. And a series of offensive hijack-
ings of trusted packages like chalk and debug
showed that established maintainers of high-pro-
file packages are being targeted as entry points
for mass distribution.

Taken together, these developments mark 2025
as a grim year for open source malware: the
moment when isolated incidents became an
integrated campaign, and bad actors proved
software supply chain attacks are now their most
reliable weapon.

FIGURE 2.1

Annual Open Source Malware Growth

1,400,000

800,000

400,000

1,000,000

1,200,000

600,000

200,000

0

M
al

ic
io

us
 P

ac
ka

ge
 T

ot
al

Year

2019 2021 20242020 20232022 2025

1,233,219
Open source malware packages
logged by Sonatype since 2019

https://www.sonatype.com/blog/cve-2024-3094-the-targeted-backdoor-supply-chain-attack-against-xz-and-liblzma
https://www.sonatype.com/blog/cve-2024-3094-the-targeted-backdoor-supply-chain-attack-against-xz-and-liblzma
https://www.sonatype.com/resources/whitepapers/how-lazarus-group-is-weaponizing-open-source
https://www.sonatype.com/blog/ongoing-npm-software-supply-chain-attack-exposes-new-risks
https://www.sonatype.com/blog/the-second-coming-of-shai-hulud-attackers-innovating-on-npm
https://www.sonatype.com/blog/unprecedented-automation-indonesianfoods-pits-open-source-against-itself
https://www.sonatype.com/blog/npm-chalk-and-debug-packages-hit-in-software-supply-chain-attack
https://www.sonatype.com/resources/articles/open-source-malware

22 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

The Threat Taxonomy: What Open
Source Malware Does Today
Open source malware is best understood less
as a set of isolated “bad packages” and more as
a set of repeatable behaviors that exploit how
modern software is built and shipped. Public reg-
istries provide a low-friction distribution channel,
while developer machines and CI/CD pipelines
provide an execution environment that often sits
close to sensitive data and production access.
As a result, the malicious package is increasingly
not the whole attack, but the first step in a larger
supply chain intrusion.

REGISTRIES ARE BEING USED
AS DISTRIBUTION PLATFORMS

In 2025, the dominant pattern is operational scale
through ecosystem mechanics. Repository abuse
shows up in 55.9% of all logged malicious pack-
ages, indicating actors are treating registries like
platforms: automating publication and iterating
quickly to maximize reach. Repository abuse
packages have been observed harvesting TEA
tokens or seeking clicks on spam links. Alongside
that, Potentially Unwanted Application (PUA)
appears in 27.5% of packages, which include items
like empty packages, demos with hardcoded
credentials, or messaging app spam bot orches-
tration frameworks. These are packages that
don’t necessarily compromise the developer who
installs it or the application it is bundled into, but
are still unwanted in developer environments.

FIGURE 2.2

2025 Landscape: Open Source Malware by Threat Type

60%

50%

30%

10%

20%

40%

0

Pe
rc

en
ta

ge

Type

Backdoor PUA Host
Info Exfil

Data
Corruption

Repository
Abuser

Obfuscated
Code

Dropper Secrets
Exfil

Crypto
Miners

0%

27.5%

55.9%

2.1%
5.7%

0.6%
3.9%

1.6%2.7%

22 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

https://www.sonatype.com/blog/devs-flood-npm-with-10000-packages-to-reward-themselves-with-tea-tokens
https://www.sonatype.com/blog/devs-flood-npm-with-10000-packages-to-reward-themselves-with-tea-tokens

MALWARE AT THE GATE

23 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

DEVELOPER AND BUILD
ENVIRONMENTS ARE THE PRIZE

A consistent objective is harvesting valuable data
from where software gets built. Host information
exfiltration appears in 5.7% of packages, and
secrets exfiltration in 3.9%. These aren’t the larg-
est categories by volume, but they’re high-lever-
age: packages run inside developer machines and
CI/CD environments where tokens, API keys, and
CI credentials are commonly present and reusable.

ATTACKS ARE ENGINEERED AS
CHAINS, NOT SINGLE PAYLOADS

Sonatype observed clear signs of staged delivery
and follow-on capability. Droppers/loaders appear
in 2.7% of packages, and backdoors in 2.1%, with
obfuscated code in 1.6% acting as a force multiplier
that helps these chains persist and evade inspec-
tion. Even lower-volume disruption behaviors mat-
ter for impact: data corruption appears in 0.62%
and targets build outputs and release workflows
where compromise can propagate downstream.

DEVELOPERS ARE THE ATTACK VECTOR

Software supply chain attackers are perfecting
social and technical mimicry to target and exploit
developers making development decisions fast
and with incomplete information.

Attackers increasingly rely less on individual mis-
takes and more on scale, momentum, and volume.
They know developers under deadline pressure
are unlikely to pay detailed attention on every
dependency. If a package “looks right” with mostly
comprehensible code, a legitimate seeming
README.MD, and a reasonable amount of down-
loads, it is likely to get installed.

SOCIAL AND TECHNICAL MIMICRY TECHNIQUES
•	 Typosquatting and namespace con-

fusion remain staple techniques, but
they operate differently. Typosquatting
relies on minor spelling variations of
legitimate package names, counting
on human error during installation.
Namespace confusion exploits how
package managers resolve dependen-
cies across public and private scopes.
This allows attackers to publish public
packages with the same name as inter-
nal or expected dependencies, so they
are inadvertently pulled into builds.

•	 Toolchain masquerading is acceler-
ating. Rather than posing as generic
utilities, malicious packages increas-
ingly impersonate the everyday tools
developers install reflexively: frame-
work add-ons, build plugins, linters,
scaffolding utilities, and migration
helpers. These packages are designed
to look like routine workflow depen-
dencies, making them more likely to
be installed without close inspection.

•	 Front-end workflow lures are espe-
cially common. Attackers cluster
package names around high-veloc-
ity ecosystems and popular tooling
where dependency decisions are fre-
quent, repetitive, and time-boxed. In
these environments, developers often
add or swap dependencies rapidly,
creating ideal conditions for malicious
lookalikes to blend in.

24 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

How North Korea
Weaponizes Open Source
The Lazarus Group, or APT38, epitomizes the
2025 malware shift from opportunistic to indus-
trialized. Building on earlier research, Sonatype
identified more than 800 Lazarus-associated
packages this year, concentrated overwhelm-
ingly in npm (97%). In practical terms, npm pro-
vides the fastest path from package publication
to developer workstation because it does not
require namespace validation and tooling prefers
the latest versions. By concentrating activity
there, Lazarus maximizes the likelihood that
poisoned dependencies will be installed quickly,
propagate through transitive dependency
chains, and spill into build pipelines, CI/CD sys-
tems, and downstream production environments
with minimal friction.

This level of sustained activity aligns with broader
public reporting that cyber operations, including
theft, espionage, and cryptocurrency-related
crime, have become significant sources of reve-
nue for the North Korean government. As a result,
Lazarus now operates as one of the most prolific
and successful state-sponsored cybercriminal
enterprises in operation today. Lazarus is invest-
ing in ecosystems where speed, scale, and reuse
combine to maximize the downstream impact of
each compromised dependency.

HYBRID MALWARE DOMINATES
THE LAZARUS PLAYBOOK

Lazarus packages are distinguished by how
they integrate multiple threat behaviors into a
single component. These aren’t single-purpose
nuisances; they’re multi-function packages
designed to support a staged intrusion chain.
Sonatype Security Research observed that most

Lazarus packages carry multiple threat behav-
iors: roughly 77% include two or more threat
types, and nearly 9% include four or more. In plain
terms, the “package” is often just stage zero.

Behaviorally, the profile is dropper-led and cre-
dential-first: droppers appear in ~98% of pack-
ages, secrets exfiltration in ~64%, and backdoor
functionality in ~29%. That combination matters.
Droppers keep the published artifact small and
less obviously malicious; exfiltration turns a
single install into stolen tokens and credentials;
and backdoor capability reflects investment in
persistence and post-compromise control. The
Lazarus pattern demonstrates repeatable intru-
sion tooling that is built to land quietly, harvest
access, and remain useful after the initial foothold.

FIGURE 2.3

Lazarus Group Packages by
Number of Threat Type

500

400

200

100

300

0

Pa
ck

ag
es

Number of Threat Types

One ThreeTwo FiveFour

147

408

188

22
47

https://www.sonatype.com/blog/sonatype-uncovers-global-espionage-campaign-in-open-source-ecosystems
https://www.sonatype.com/resources/whitepapers/how-lazarus-group-is-weaponizing-open-source
https://www.bbc.com/news/articles/c2kgndwwd7lo
https://www.bbc.com/news/articles/c2kgndwwd7lo
https://www.sonatype.com/resources/whitepapers/how-lazarus-group-is-weaponizing-open-source
https://www.sonatype.com/resources/whitepapers/how-lazarus-group-is-weaponizing-open-source

MALWARE AT THE GATE

25 2026 STATE OF THE SOFTWARE SUPPLY CHAIN25 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

TARGETING IS OPTIMIZED TO
EXPLOIT MUSCLE MEMORY

Lazarus targeting is engineered around how
developers actually pick dependencies: familiar
names, familiar ecosystems, familiar moments
of need. These packages do not resemble overt
threats; rather, these packages present as the
routine glue of front-end workflows, such as
framework add-ons, build helpers, plugin utilities,
and configuration packages that developers
install reflexively.

The naming patterns show deliberate clustering
around high-velocity toolchains, such as Tail-
wind, Vite, and React. Zooming out, nearly 43%
of Lazarus-linked packages reference common
developer framework or tool keywords.

FIGURE 2.4

Lazarus Group Campaign
Threat Types

Secrets
Exfiltration
29.8%

Backdoor
13.7%

Obfuscated
Code
7.4%

Dropper
45.8%

Host Information
Exfiltration

3.4%

FIGURE 2.5

Top Lazarus Group Developer Lures

125

75

25

100

50

0

N
um

be
r o

f P
ac

ka
ge

s

Hook

Tailwind React ESLint PostCSSVite NextNode Webpack Babel

111

88
77

45

13 10 8 8 8

26 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

This is an intentional distribution strategy. These
ecosystems have high dependency churn, many
“one more plugin” installs, and constant trou-
bleshooting under deadlines. That’s the ideal
environment for lookalike packages to blend in
and get pulled into both workstations and CI.
Sonatype’s prior research showed that mod-
ern applications routinely contain hundreds of
dependencies — averaging around 180 — making
it unrealistic for developers to closely scrutinize
every package they consume.

EXECUTION IS MODULAR
AND REPEATABLE

One of the most important operational signals
in Sonatype’s analysis is how scalable the cam-
paign was. The data shows strong indicators of
templated reuse and rapid variant generation as
opposed to one-off, bespoke malware. The distri-
bution is sharply concentrated: Sonatype Secu-
rity Research mapped 341 packages to a set of
just 32 anchor packages, and the largest anchor
clusters fan out into dozens of related variants.

That concentration is a direct indicator of man-
ufacturing capacity: Lazarus can iterate quickly,
generate families of near-neighbors, and keep
publishing even as specific packages are iden-
tified and removed. In other words, this is not a
handful of malicious uploads. It’s a production line.

SHAI-HULUD: A NEW ERA OF
SELF-REPLICATING MALWARE

The Shai-Hulud software supply chain attack in
September 2025 marked a turning point: the first
known self-replicating npm malware observed
spreading autonomously across developer envi-
ronments and packages, more like a traditional
network worm than a passive library.

Hidden deep within duplicate files and nested
directories, Shai-Hulud evaded superficial scans
and leveraged maintainer credential theft to pub-
lish poisoned updates. The worm compromised
more than 500 packages in days, spreading auton-
omously across registries and developer machines.

EACH SHAI-HULUD
PACKAGE CARRIED A
PAYLOAD DESIGNED TO:

•	 Steal npm authentication tokens,

•	 Replicate by infecting other locally
linked projects, and

•	 Exfiltrate environmental credentials
via encrypted payloads.

To support this, the attackers used public
code-hosting services as dead drops,
helping the traffic blend in with normal
developer workflows.

https://www.sonatype.com/state-of-the-software-supply-chain/2024/optimization
https://www.sonatype.com/blog/ongoing-npm-software-supply-chain-attack-exposes-new-risks
https://www.sonatype.com/blog/ongoing-npm-software-supply-chain-attack-exposes-new-risks

MALWARE AT THE GATE

27 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

The result was a rapidly self-propagating soft-
ware supply chain worm, capable of infecting
projects downstream without any manual publi-
cation step. This was quickly followed by another
self-replicating npm malware in November,
named “Sha1-Hulud: The Second Coming.” These
campaigns escalation illustrates the next phase
of open source malware — one that behaves
more like network worms than passive implants.

In contrast to traditionally-understood malware,
which needed to be downloaded and installed
before the malware would execute, open source
malware executes pre-install, meaning developers
only need to download in order to become a victim.

SELF-REPLICATING MALWARE IN 2025

September 16, 2025

Shai-Hulud | npm
500+ packages
The first documented
self-replicating open
source malware;
demonstrated
innovative use of
automation by
attackers to hijack
accounts and publish
new, malicious versions
of legitimate packages.

November 9, 2025

Glassworm | OpenVSX
and Microsoft VSCode
3 packages
New malicious packages
uncovered with 10,000
downloads using
new extensions and
publisher accounts to
bypass cleanup efforts.

November 24, 2025

Sha1-Hulud: The
Second Coming | npm
49 packages
The hijacking campaign
surged a second time
with a new name and
slight tweaks to evade
detection; the attackers
also introduced
the use of Bun to
deploy the payload.

October 17, 2025
Glassworm | OpenVSX
and Microsoft VSCode
12 packages
Impersonated popular
developer tools to
steal credentials,
drain cryptocurrency
wallets, and use the
Solana blockchain for
command-and-control
communication.

November 11, 2025

IndonesianFoods | npm
169,538 packages
This campaign was
designed to self-replicate
every seven seconds.
While some packages
abused the TEA protocol,
most appeared designed
to overwhelm detection
and exploit ecosystem
trust at scale.

December 1, 2025

Glassworm | OpenVSX
and Microsoft VSCode
24 packages
In this third wave, the
threat actors artificially
inflated download counts
of the packages to
increase discoverability.

28 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

The Open Source Malware
Supply Chain
Modern open source malware is modular, resil-
ient, and designed to bypass both static and
human inspection.

•	 Multi-stage payloads: Droppers download
encrypted payloads from C2 servers or embed
secondary stages locally.

•	 Obfuscation layers: Increasing use of eval(),
encoded scripts, or disguised binaries within
legitimate file trees.

•	 Legitimate infrastructure for C2: Slack,
GitHub, Dropbox, cryptocurrency blockchain,
and even logging services (like Better Stack)
are co-opted for command-and-control traffic.

•	 Local project propagation: Recent attacks
weaponize developer machines to infect all
other projects they find and pushing infected
versions upstream.

•	 Multi-process behavior: Telemetry from
Sonatype’s behavioral analysis indicates a rise
in “multi-process modular malware,” particu-
larly in npm and PyPI.

•	 Install-time execution: The latest malicious
packages run during installation, dropping
payloads before builds.

The throughline shows malware is adopting the
same modular architecture that makes open
source so powerful. In 2025, software supply
chain attacks mirrored the software supply chain
itself. The risk is not theoretical. It’s structural.

This phenomenon is especially visible in ML and
DevOps contexts. MLOps is still a newer, less
mature discipline, and it has not yet absorbed
many of the supply chain lessons that became

standard practice in traditional software devel-
opment. Combined with intense pressure for
rapid experimentation and deployment, teams
often default to convenience-driven workflows
that bypass normal governance.

In practice, that shows up as ungoverned
“shadow downloads” that pull artifacts directly
from wherever they are easiest to access. Exam-
ples include precompiled Python wheels and
CUDA libraries fetched from unofficial sources,
Hugging Face models loaded directly through
package installs or runtime calls, and internal
scripts or agents that silently retrieve dependen-
cies from places like GitHub or Pastebin.

This mirrors the “Complacency and Contami-
nation” model from the 10th Annual State of the
Software Supply Chain report. Shadow down-
loads are the modern form of contamination,
created when enforcement gaps intersect with
developer convenience and automation.

HOW SHADOW DOWNLOADS
COMPOUND OPEN SOURCE
MALWARE RISK

•	 Invisible: Shadow artifacts often never
appear in SBOMs or inventory systems.

•	 Unscanned: Because they bypass
governed repositories, these artifacts
frequently evade security scanning and
policy enforcement altogether.

•	 Unattributable: With no verified origin
or provenance, organizations have no
reliable way to trust, trace, or audit what
they’ve pulled in.

https://www.sonatype.com/state-of-the-software-supply-chain/2024/introduction
https://www.sonatype.com/state-of-the-software-supply-chain/2024/introduction

MALWARE AT THE GATE

29 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Emerging Threats
As AI becomes core to modern pipelines, attack-
ers are following the trend, embedding malicious
payloads into container images, AI models, and
helper binaries distributed through trusted
platforms.

MALICIOUS AI MODELS
IN HUGGING FACE

Although many quarantined models observed
to-date are not overtly nefarious, the underlying
pattern reveals a structural weakness in model
registries: model artifacts are being treated like
data and scanned as single items, but in reality,
most behave more like code and can be treated
much the same way.

Sonatype’s research into picklescan vulnerabili-
ties underscored why this is uniquely dangerous
in ML: widely used serialization formats can exe-
cute code during deserialization, turning a rou-
tine “load model” step into an execution path.

It’s important to note the shape of the malicious
activity observed on Hugging Face: many of
these repositories appear consistent with secu-
rity research or proof-of-concept demonstration
uploads rather than fully operational criminal
campaigns. Some are transparently labeled as
unsafe, and several show low download counts.
That doesn’t reduce the underlying software sup-
ply chain risk, but rather highlights it. In a model
registry, even a “demo” artifact can be copied,
repackaged, or pulled into the wrong environment,
and the consequences play out at runtime.

Two examples illustrate why this matters:

•	 Backdoored model artifacts enabling remote
access. A cluster of models published under
the same account exhibited behavior con-
sistent with establishing a reverse shell to an
external host, granting an attacker interactive
access to any machine that loads the model.
Even when download counts are low, the risk is
disproportionate: models are frequently pulled
into shared environments (developer work-
stations, notebooks, CI runners, GPU boxes)
where credentials and tokens are plentiful.

•	 Embedded malicious code in serialized
model files. In another case, a model artifact (a
serialized file) contained embedded malicious
logic that invoked common system tooling to
exfiltrate local files (for example, transmitting
/etc/passwd to a remote endpoint). The key
point isn’t the specific file targeted — it’s the
mechanism: a “model download” can become
code execution at load time if organizations
treat model artifacts as inherently safe.

MODEL REGISTRIES NEED THE SAME
SUPPLY- CHAIN GUARANTEES AS
PACKAGE REGISTRIES, BECAUSE THE
BLAST RADIUS OF A COMPROMISED
MODEL OFTEN INCLUDES THE VERY
SYSTEMS THAT HOLD THE HIGHEST-
VALUE SECRETS.

https://www.sonatype.com/blog/bypassing-picklescan-sonatype-discovers-four-vulnerabilities

30 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

A I AGENTS AS SOFTWARE SUPPLY CHAIN ATTACK MULTIPLIERS

AI development assistants and autonomous agents have rushed into developer workflows, but the
integration of those agents into their security models has not happened. Experiments show agents
have a knowledge cut-off date well in the past, resulting in them happily installing whatever depen-
dency resolves a build error without checking provenance, policy, or known-malicious indicators.

In the From Guesswork to Grounded chapter, we will show that AI code assistants like Claude or
ChatGPT can fetch and install malicious code automatically when prompted to fix dependency errors
or install missing libraries. The developer’s intent may be harmless, but the result can be catastrophic.

Attackers are increasingly preying on this. Sonatype’s 2025 malware research continues to document
deceptive naming patterns — including typosquatting and new evasion tactics that mimic legitimate
dependencies to trick developers into installing malware. As organizations integrate AI coding assis-
tants into production workflows, they must recognize that these systems are not neutral intermediar-
ies. They are potential infection vectors.

How Will Software Supply
Chain Attacks Evolve?
The next frontier of software supply chain
attacks is not limited to package managers. AI
model hubs and autonomous agents are con-
verging with open source into a single, fluid soft-
ware supply chain — a mesh of interdependent
ecosystems without uniform security standards.

Malware authors already understand this con-
vergence. They are embedding persistence inside
containers, pickled model files, and precompiled
binaries that flow between data scientists, CI/CD
systems, and runtime environments.

DEVELOPERS ARE
NO LONGER AT THE
PERIMETER. THEY
ARE THE PERIMETER.

https://www.sonatype.com/blog/phantomraven-npm-malware

THE THREE-LAYERS OF FAILURE

31 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

The Limits of Modern Vulnerability Management
Modern vulnerability management is struggling to keep up with
the rapid evolution of the software it aims to protect. It’s not a sin-
gle tool, team, or workflow that’s failing, but the entire system that
allows open source vulnerabilities to exist.

Despite major investment in scanning tools, disclosure pipelines,
and security automation, organizations continue to operate with
blind spots large enough for systemic risk to take root. Our anal-
ysis shows this failure compounds across three breakpoints in
the software ecosystem, each breaking in its own way, and each
amplifying the others.

THE GROWING
INTEGRATION OF
AI INTO SOFTWARE
DEVELOPMENT IS
ONLY EXACERBATING
THIS CHALLENGE .

The Three Layers of Failure in

MODERN VULNERABILITY
MANAGEMENT

https://www.sonatype.com/blog/why-the-worlds-vulnerability-index-cannot-keep-up

THE THREE-LAYERS OF FAILURE

32 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

ACCUMULATED VULNERABILITY DEBT
•	 Data Layer: Incomplete, inaccurate,

and delayed public vulnerability
intelligence

•	 Consumption Layer: Developers, AI,
and pipelines keep pulling vulnerable
components

•	 Ecosystem Layer: Dependence on
EOL and abandoned components
locks in permanent risk

THE DATA LAYER

The Data Layer consists of various elements
within the global vulnerability intelligence sys-
tem: CVE (the Common Vulnerabilities Enumer-
ation program), NVD (the National Vulnerability
Database), and the advisory pipelines around
them. Elements in this layer are increasingly
incomplete, inconsistent, and slow. Coverage
gaps, inaccurate version data, and long scoring
delays distort how risk is understood and priori-
tized by both humans and AI.

THE CONSUMPTION LAYER

The Consumption Layer describes any activi-
ties related to importing open source software.
Even when accurate data and patches exist,
organizations continue to download and deploy
vulnerable components. Dependency pinning,
sprawling transitive graphs, outdated CI images,
and ungoverned AI-generated component selec-
tion all reinforce the reuse of insecure versions. AI
tools can only make recommendations that are as
up-to-date as their training data. Much of today’s
risk arises not from new exploits, but through per-
sistent poor consumption habits.

THE ECOSYSTEM LAYER

The Ecosystem Layer encapsulates the myriad of
decisions that must be made for long-lived proj-
ects with open source dependencies. A growing
share of software now depends on unsupported
or end-of-life (EOL) releases. These components
receive no patches, making vulnerabilities perma-
nent. Legacy frameworks, abandoned libraries,
and orphaned versions accumulate as long-term

technical debt, leaving organizations dependent
on software that cannot be secured through tradi-
tional remediation.

This chapter quantifies where the system breaks
down, and outlines what a modern vulnerability
management model must look like in a world
where software moves far faster than the legacy
processes designed to safeguard it.

ECOSYSTEM
LAYER

CONSUMPTION
LAYER

DATA
LAYER

https://www.herodevs.com/blog-posts/navigating-end-of-life-in-open-source-software-challenges-and-triumphs

33 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

The Data Layer Is Breaking Down
Modern threat and vulnerability management
relies on the global intelligence ecosystem,
anchored by the CVE program, NVD enrichment
data, and upstream advisory pipelines that feed
them. But that foundation is no longer consis-
tently reliable. Coverage gaps, inconsistent meta-
data, delayed scoring, and missing ecosystem
context now distort the very signals organizations
depend on to assess and prioritize risk. When the
underlying data is incomplete or wrong, every
downstream decision, whether by humans, scan-
ners, or AI, starts from a flawed premise.

Sonatype Security Research analyzed more
than 1,700 open source CVEs throughout 2025
to understand where the gaps lie, and how
they are impacting software development and
security teams.

COVERAGE COLLAPSE

The first warning sign is the growing gap in basic
CVE coverage. Nearly 65% of open source CVEs
lack an NVD-assigned CVSS score, leaving most
open source vulnerabilities without an official
severity rating. That means that only about
600 open source vulnerabilities last year could
effectively be triaged. When Sonatype assigned
scores to these unscored CVEs, 46% were
actually High or Critical, meaning many serious
vulnerabilities enter the ecosystem without any
meaningful prioritization signal.

IN 2025, ENTERPRISES COULD ONLY
TRIAGE 35% OF VULNERABILITIES
IF RELYING ON PUBLIC CVE DATA .

This problem is accelerating. In just five years, the
global CVE count has doubled, yet the number of
unscored CVEs has increased 37×, overwhelming
a system built for manual processing and slower
software cycles. As volume grows, the gap wid-
ens — leaving defenders without the baseline CVE
data they rely on to triage risk effectively.

FIGURE 3.1

NVD-Assigned Severity of
2025 Open Source CVEs

Critical
5.3%

High
13.2%

Medium
16.0%

Unscored
64.5%

Low
1.0%

46%
of unscored CVEs rated as High
or Critical after Sonatype review

THE THREE-LAYERS OF FAILURE

34 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

FIGURE 3.2

Severity Score and
Category Adjustments

80%

40%

20%

60%

0

Sonatype Adjustment

NVD Higher

61.3%

33.4%

4.4%

55.7%

34.3%

10.8%

Same NVD Lower

Score Category

ACCURACY FAILURES

Even when scores exist, they’re inconsistent
enough to drive different outcomes depending
on which feed you trust. Compared to Sonatype
scoring and analysis, exact CVSS score matches
are rare (4.4%), and severity categories align only
55.7% of the time. This means 44% of CVEs land
in a different bucket in NVD versus Sonatype.
The direction of the drift is usually upward in
NVD: 61.3% of NVD scores are higher than Sona-
type, compared with 34.3% that are lower.

Sonatype identified 20,362 false positives, or
packages incorrectly marked as vulnerable, creat-
ing noise in vulnerability management workflows
and wasting developer time, and 167,286 false
negatives, meaning exploitable components went
unflagged entirely. The result is a vulnerability
intelligence ecosystem that misleads both devel-
opers and security teams, forcing organizations
to spend time on issues that don’t exist while
overlooking those that do. Inaccurate data also
biases AI-driven tools, which use this information
to determine dependency selection, upgrade
paths, and remediation recommendations.

167,286
false negatives identified
by Sonatype

20,362
false positives identified
by Sonatype

1 IN 7
NVD-scored CVEs differ from
Sonatype by 3+ CVSS points

35 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

DELAYS THAT BREAK DEFENSES

In 2025, the NVD’s median time-to-score for
open source CVEs was 41 days, with some taking
up to a year. Meanwhile, exploit proof-of-con-
cepts and maintainer patches frequently appear
within hours. This growing lag renders “official”
vulnerability information increasingly stale. By
the time a CVE receives a severity score, the
vulnerability may already be exploited in the wild,
patched upstream, or both. Organizations relying
exclusively on NVD data become effectively blind
during the period when fast action matters most.

FIGURE 3.3

NVD Time-to-Analysis of
2025 Open Source CVEs

C
um

ul
at

iv
e

Sh
ar

e
of

 C
V

Es

35%
took more than 3 months to
receive a complete NVD record

EVEN MINOR METADATA
INACCURACIES CREATE
OUTZIDED REAL-WORLD
CONSEQUENCES:

•	 Incorrect vulnerable version ranges
generated thousands of false positives,
overwhelming downstream scanners.

•	 Wrong component identifiers resulted
in silent false negatives — packages
with real vulnerabilities passed security
checks unflagged.

•	 EOL versions omitted from advisories
gave organizations a false sense of
security, masking risks that upstream
maintainers no longer track.

•	 These cases reveal a systemic issue:
the CVE system excels at naming vul-
nerabilities, but struggles to describe
them reliably enough for automated
decision-making.

80%

60%

40%

20%

0

Timeframe

≤48 hours <7 days <30 days <90 days ≥90 days

5.6%

16.6%

46.4%

64.8%

35.2%

THE THREE-LAYERS OF FAILURE

36 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

AI AS A FORCE MULTIPLIER
FOR BAD DATA

AI-assisted development tools — increasingly
embedded across coding, build, and remedia-
tion workflows — amplify the weaknesses of the
data layer. Large language models are trained on
public CVE and NVD data and treat it as author-
itative even when it is incomplete, outdated,
or incorrect. This impact is compounded when
using an older model. As a result, AI does not fix
bad data, but rather distributes it faster, which
is examined closer in the From Guesswork to
Grounded chapter.

The data layer is the foundation of threat and
vulnerability management, yet today it is the
least reliable part of the system. Incomplete
coverage, inaccurate metadata, long scoring
delays, AI amplification, and shadow download
blind spots collectively undermine the ability of
organizations to recognize and respond to real
risk. When the data layer fails, every subsequent
decision — what to fix, when to fix it, and how to
prioritize it — begins from the wrong premise.

Poor Consumption Patterns
Sustain Avoidable Risk
Even when vulnerability data is accurate and
patches are readily available, risk persists
because of how organizations actually consume
open source. Dependency pinning, transitive
pull-ins, outdated build images, and AI-gener-
ated manifests all keep vulnerable components
in circulation long after fixes exist. In practice,
a large share of modern vulnerability exposure
is not created by new flaws — it is sustained by
repeated reuse of old ones.

LOG4 SHELL : THE CASE THAT
SHOULD HAVE CHANGED
EVERYTHING — BUT DIDN’ T

Log4Shell was expected to be the turning point:
the moment the industry collectively learned to
upgrade quickly, retire vulnerable components,
and modernize dependency practices. Four years
later, the data tells a different story: the remedi-
ation path is well-understood and non-breaking,
the open source vulnerability is universally rec-
ognized, and yet vulnerable versions continue to
circulate at scale.

IN 2025 ALONE , DEVELOPERS
DOWNLOADED MORE THAN 42
MILLION VULNERABLE VERSIONS OF
LOG4J, REPRESENTING 13% OF ALL
LOG4J DOWNLOADS WORLDWIDE .

Regional patterns make the problem even clearer.
While some markets have driven vulnerable Log4j
usage down to single digits, others continue to
pull 20–45% vulnerable versions, suggesting
deeply uneven adoption of safe releases and
persistent reliance on outdated build tem-
plates, pinned versions, or ungoverned transitive
dependencies.

Log4Shell should have eliminated any doubt
about the cost of running outdated open source.
Instead, it revealed how ingrained consumption
habits can be — and how long vulnerable code
can persist, even when every incentive exists to
move away from it.

https://www.sonatype.com/blog/unnecessary-risk-the-persistence-of-open-source-vulnerabilities
https://www.sonatype.com/whitepapers/the-persistence-of-open-source-vulnerabilities

37 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

THE BROADER PATTERN: JAVA’S
TOP UNNECESSARY RISKS

Log4Shell remains the most visible example of
“avoidable” vulnerability exposure, but it is not
the dominant driver. Taking a broader look at the
Java ecosystem, Sonatype analyzed the most
frequently downloaded components that con-
tained a vulnerability, despite a fix for that vulner-
ability already existing. The same consumption
pattern repeats across the ecosystem: the vast
majority of vulnerable components being down-
loaded already have a safer version available. The
10th Annual State of the Software Supply Chain
Report found that roughly 95% of vulnerable
component downloads had a fix on the shelf,
while only ~0.5% represented true edge cases
with no upstream path forward.

The most concerning signal is how frequently
well-known vulnerable releases persist years
after fixes are released. The Java ecosystem

provides clear examples: widely used libraries
with long-available patches still see substantial
(and in some cases overwhelming) consumption
of vulnerable versions. This is “unnecessary risk”
in its purest form: risk that organizations con-
tinue to import into new builds even when safer
versions are readily available.

Sonatype took a closer look at four vulnerable
component versions with released fixes that,
combined, represent a total of nearly 1.8 billion
avoidable vulnerable downloads in 2025.

These packages share three characteristics: (1) at
least one disclosed vulnerability, (2) a published
fix, and (3) low adoption of the fixed line. The
reasons are rarely dramatic. They’re structural:
pinned versions copied across services, transitive
dependency blind spots, upgrade friction (espe-
cially across major versions), and selection signals
that reward familiarity over maintainability.

Component

Vulnerable
version(s) still
widely consumed

Fixed
version
available

% of 2025 avoidable
vulnerable downloads

Representative
CVE(s)

Why it persists
(consumption drivers)

commons-
compress

1.21 1.26
(Feb 2024)

46.32% CVE-2012-2098,
CVE-2024-26308,
CVE-2020-1945,
CVE-2024-25710,
CVE-2021-36374

Deeply embedded in build/packaging
workflows; low “visibility” dependency;
upgrades deferred unless forced.

commons-
lang

2.6
(legacy major line)

3.18.0
(Jul 2025)

99.88% CVE-2025-48924 Major-version migration is non-trivial
(2.x → 3.x); older enterprise stacks remain
pinned to legacy APIs.

snappy 0.4 0.5
(May 2024)

99.58% CVE-2024-36124 Common in distributed platforms
(e.g., Hadoop/Spark ecosystems) where
low-level compression deps are pinned
for stability/performance.

jdom2 2.0.6 2.0.6.1
(Dec 2021)

57.73% CVE-2021-33813 Widely reused XML utility; upgrade iner-
tia and “if it isn’t broken” maintenance
norms keep vulnerable lines circulating.

FOUR VULNERABLE COMPONENT VERSIONS WITH RELEASED FIXES

37 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

https://www.sonatype.com/state-of-the-software-supply-chain/Introduction
https://www.sonatype.com/state-of-the-software-supply-chain/Introduction
https://www.sonatype.com/state-of-the-software-supply-chain/Introduction

THE THREE-LAYERS OF FAILURE

38 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

WHY TEAMS KEEP DOWNLOADING OPEN SOURCE VULNERABILITIES

If patches exist and the risks are well-known, why do vulnerable components continue to
flow into modern software at such scale? The answer lies not in malicious intent, but in
the quiet, structural habits of software development. Collectively, these patterns mean
vulnerable components remain in circulation, not because teams are unaware of the risk,
but because the system makes unsafe choices easier than safe ones.

SET-AND-FORGET DEPENDENCIES
A version gets pinned once and then copied forward across
services for years.

TRANSITIVE DEPENDENCIES + UNCLEAR OWNERSHIP
Vulnerabilities arrive via the dependency tree, not direct installs.

TOOLING THAT SHRIEKS BUT DOESN’T STEER
Scanners generate long CVE lists without clear
prioritization or safe upgrade paths.

INCENTIVES FAVOR FEATURES OVER HYGIENE
Maintenance work is deferred unless there’s a fire drill.

THE RESULT:
Changing dependencies
feels risky; leaving them
alone feels “safe.”

THE RESULT:
No single team feels
accountable for buried
upgrades.

THE RESULT:
Teams hit alert fatigue
and avoid “break the
build” upgrades.

THE RESULT:
Delivery is rewarded;
dependency upkeep is
invisible..

THE SYSTEM MAKES UNSAFE CHOICES EASIER THAN SAFE ONES.

38 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

39 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

AI EXACERBATES VULNERABLE
CONSUMPTION

AI-assisted development tools are increasingly
embedded across modern software workflows —
from code generation and dependency selection
to build configuration and remediation guidance.
While these tools can accelerate delivery, they
also inherit and amplify the same consumption
patterns that already sustain vulnerability risk. AI
amplifies vulnerable consumption in several pre-
dictable ways:

AI suggests “popular” (historically common)
versions, not secure ones.

AI generates manifests with outdated/vul-
nerable components.

Training data lags, so even after fixes exist,
AI keeps suggesting vulnerable versions.

Without governance, AI increases compo-
nent sprawl.

AI does not introduce new vulnerability classes,
but it accelerates existing consumption behav-
ior. When unsafe versions are already easier to
consume than safe ones, AI makes those unsafe
choices faster, more repeatable, and harder to
unwind. Most vulnerability risk is no longer a vul-
nerability discovery problem. It’s a consumption
behavior problem, and AI scales that behavior
by default.

When the Ecosystem Stops
Maintaining Your Software
Even with accurate vulnerability intelligence
and disciplined dependency practices, some
risks cannot be mitigated because the software
itself is no longer maintained. A growing share
of open source components now lives on EOL,
or abandoned release lines, where no patches
will ever be issued and new open source vulner-
abilities may never be disclosed. These depen-
dencies create permanent exposure: organiza-
tions inherit flaws that cannot be remediated
upstream, locking long-term risk into the foun-
dation of their software.

To analyze how End-of-life (EOL) dependencies
turn vulnerabilities into persistent risk, we part-
nered with HeroDevs to examine the security
impact of EOL software across modern software
supply chains.

AI DOES NOT INTRODUCE
NEW VULNERABILITY
CLASSES, BUT IT
ACCELERATES EXISTING
CONSUMPTION BEHAVIOR.

1.

3.

2.

4.

THE THREE-LAYERS OF FAILURE

40 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

EOL SOFTWARE IS NOT AN EDGE CASE

EOL software is often discussed as something a mature program will eventually “clean up.” But data
and analysis from HeroDevs suggests the opposite: EOL dependencies are a structural flaw of
modern enterprise stacks, showing up consistently across ecosystems and persisting over time.

EOL changes the risk model. A measurable share of open source vulnerabilities now fall into a cat-
egory that traditional remediation workflows cannot resolve. For these components, “scan → ticket
→ patch” stops being a workflow and becomes a backlog generator.

81,000+
package versions with known CVEs are
both EOL and unpatchable. HeroDevs
estimates this number may actually be
400,000 across all registries.

ALL EXPOSED
EOL exposure appears across all major
ecosystems (Java, Python, npm), with little
variation in long-term persistence, sug-
gesting this is not limited to one language
community or a single package manager.

5–15%
of components in enterprise dependency
graphs are EOL, meaning EOL exposure is
present even when teams believe they are
only using supported top-level libraries.

FIGURE 3.4

Breakdown of EOL
Components by Registry

30%

20%

10%

0

Registry

Pe
rc

en
t

npm Maven
Central

PyPl Cargo NuGet

18.5%

13.4%
11.6%

10.5%

25.7%

https://www.herodevs.com/blog-posts/the-economics-of-ignoring-end-of-life-software-a-real-cost-breakdown

41 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

WHY EOL ALLOWS “FOREVER
VULNERABILITIES”

Most vulnerability programs assume a predictable
lifecycle: issues are disclosed, fixes are released,
and risk declines as organizations patch and
upgrade. EOL status breaks that logic. Once a
release line is out of maintenance, upstream fixes
stop, and a vulnerability can persist indefinitely —
not simply because teams are slow to respond,
but because the ecosystem no longer provides a
patch path. At the same time, advisory coverage
often degrades for unsupported versions, cre-
ating blind spots where EOL exposure is under-
counted or missed entirely. And because aban-
doned code is reviewed less, fewer issues may be
found or disclosed, so “no CVE” can indicate low
scrutiny rather than safety.

In practice, EOL turns ordinary defects into “forever
vulnerabilities”: liabilities that cannot be resolved
through routine patching and instead require major
upgrades, replacements, or commercial backports.
AI-assisted development can amplify this effect

by steering teams toward what is most common
in historical code rather than what is currently
supported. EOL components often appear “pop-
ular” in public corpora, making them more likely
to be suggested and adopted as defaults in
AI-generated manifests. Once introduced, those
patterns can replicate across services through
reuse, reinforcing dependence on software that
has no viable long-term remediation path.

EOL IN THE WILD: LOG4 SHELL
AND OTHERS

EOL is not just a theoretical lifecycle concern. It
has measurable real-world impact during major
incidents. Log4Shell illustrates how EOL status
can prevent closure even when a fix exists in
maintained branches. Real-world cases show
how EOL obstructs remediation:

•	 14% of Log4j artifacts affected by Log4Shell
are now EOL, representing more than 619
million downloads in 2025, preventing closure
even four years later.

•	 Widely deployed major versions of Java, Node.
js, Python frameworks, and .NET libraries con-
tinue to see active download volume despite
being unsupported.

•	 CVE coverage for these versions is often
incomplete or missing, reinforcing misleading
“clean” scan results, especially when advisories
and scanners focus on supported release lines.

This is how “known vulnerabilities” become
“persistent exposure.” Even if engineering teams
upgrade where they can, long-tail EOL usage
can keep a vulnerability class alive in produc-
tion fleets, especially in large enterprises with
diverse portfolios, legacy workloads, and inher-
ited dependency trees.

AI REINFORCES EOL RISK
IN PREDICTABLE WAYS:

1.	 AI models recommend EOL components
because training data reflects historical
prevalence, not current support status.

2.	EOL packages often appear “popular” in
public code corpora, creating insecure
defaults in AI-generated manifests.

3.	Once introduced, EOL dependencies
are self-replicating: AI reuses prior
code patterns, deepening organiza-
tional reliance on abandoned software.

THE THREE-LAYERS OF FAILURE

42 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

THE BACKPORT ECOSYSTEM

As EOL exposure becomes unavoidable, a sec-
ondary market has emerged to provide what
upstream maintainers no longer can: security
patches for unsupported release lines. This
ecosystem is both a pragmatic mitigation path
and a signal of structural fragility in open source
lifecycle guarantees.

These programs can reduce risk when modern-
ization is not immediately feasible. But they also
underscore a core shift: for a meaningful share of
enterprise dependencies, patchability is no longer
guaranteed by the open source ecosystem itself.
Organizations must plan for lifecycle continuity as
a security requirement, not a best practice.

How the Three Layers
Compound Each Other
Together, these failures create structural vulnera-
bility debt, or risk that accumulates faster than it
can be identified, triaged, or patched. Traditional
“find and fix” workflows, centered on CVE identi-
fiers and remediation queues, cannot keep pace
with this reality. When the data is incomplete,
consumption is undisciplined, and the ecosystem
is aging, security becomes a reactive discipline
rather than a strategic one.

Modern vulnerability risk is not the product of a
single failure point. It is systemic, emerging from
the way multiple weaknesses interact across
the SDLC. When viewed in isolation, each layer
appears manageable. When combined, they
create a feedback loop that sustains risk even
in organizations with mature security programs.
The result is not a backlog problem but a struc-
tural one:

•	 Long-term residual risk persists across soft-
ware lifecycles, surviving refactors, rebuilds,
and even organizational change.

•	 Attack windows widen as vulnerable and EOL
components accumulate faster than teams
can identify, prioritize, and remove them.

•	 Remediation pipelines fall behind depen-
dency sprawl, generating more work than
existing security and engineering capacity
can absorb.

•	 Compliance artifacts drift from reality.
SBOMs, audit reports, and scan results
increasingly reflect what tools can see, not
what software actually runs, especially when
shadow downloads, or artifacts that are pulled
into development without the use of a reposi-
tory manager, bypass formal governance.

A GROWING RESPONSE
ECOSYSTEM INCLUDES:

1.	 Commercial extended-support
 providers that backport security
fixes (and sometimes ship compatible,
maintained forks).

2.	Smaller specialist vendors and
consultancies that produce targeted
patches for older release branches.

3.	Community-maintained forks that
temporarily sustain patching.

https://www.herodevs.com/blog-posts/is-there-life-after-end-of-life-for-your-open-source-software
https://www.herodevs.com/blog-posts/is-there-life-after-end-of-life-for-your-open-source-software

43 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

INCIDENT
Eventually, debt must be paid: exposure, exploit, breach.

ECOSYSTEM
Unsupported components turn “known issues” into permanent risk.

CONSUMPTION
Old and unsafe versions keep flowing into builds,
often without anyone noticing.

This is why vulnerability management feels increasingly ineffective, even as tooling improves. The
system is optimized to find and fix individual vulnerabilities, while the risk itself is produced by how
software is sourced, reused, and aged over time. When bad data feeds unsafe consumption, and
unsafe consumption feeds unpatchable software, remediation alone cannot catch up. Organizations
accumulate vulnerability debt, not because teams are inattentive, but because the system allows risk
to enter faster than it can be retired.

HOW VULNERABILITY DEBT ACCUMULATES

DATA
Blind spots create false confidence.

THE THREE-LAYERS OF FAILURE

44 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Modernizing Vulnerability
Management
The issues outlined in this chapter are not the
result of insufficient effort or tooling, but the
product of workflows designed for a slower, sim-
pler software ecosystem. Addressing modern
vulnerability risk requires modernization, not
acceleration of legacy “find-and-fix” models.

To meaningfully reduce vulnerability debt, orga-
nizations need to move beyond CVE-by-CVE
remediation toward lifecycle-based modern-
ization and governance. In practice, reducing
risk increasingly means addressing structural
weaknesses: improving the fidelity of vulnerabil-
ity intelligence, making safe dependency intake
the default, and proactively migrating away from
EOL components that have no future patch path.

This shift is necessary because vulnerability risk
is now systemic rather than isolated. Modern vul-
nerability management often fails at the system
level, constrained by weak data quality, inefficient
consumption patterns, and the compounding
effects of aging software foundations. The data
layer, in particular, is increasingly misaligned with
real-world exposure: coverage gaps, inaccurate
metadata, and delayed scoring distort prioriti-
zation, waste remediation effort, and obscure
material risk.

At the same time, the ecosystem itself is aging
in ways that create durable exposure. EOL and
abandoned components transform open source
vulnerabilities into long-term liabilities that cannot
simply be patched away; they must be modern-
ized out of the environment or supported through
alternative maintenance models. AI increases the
urgency of this modernization agenda.

WITHOUT GOVERNANCE , AI CAN AMPLIFY
EACH FAILURE MODE , MAKING LIFECYCLE
MODERNIZATION, NOT CVE TRACKING ALONE ,
THE ONLY SUSTAINABLE PATH FORWARD.

45 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Layer Key Actions Primary KPI

DATA
LAYER

CONSUMPTION
LAYER

ECOSYSTEM
LAYER

AI WITHIN
CONTROLS

•	 Enrich CVE/NVD: leverage data from OSV.dev, GitHub Security
Advisories, upstream maintainers, and commercial intel.

•	 Add decision context: accurate version ranges, exploitability
signals, and EOL status.

•	 Improve identification: fingerprint shadow-downloaded arti-
facts and feed curated data into AI systems.

•	 Block by default: repository firewall + policy controls for
known-vulnerable versions and shadow downloads.

•	 Standardize safe inputs: golden images, dependency tem-
plates, internal catalogs/allowed versions.

•	 Automate hygiene: PR bots + continuous refresh with compatibili-
ty-aware upgrades; govern build agents/AI to approved sources.

•	 Treat EOL as critical: detect, prioritize, and remove unsup-
ported components.

•	 Define exit paths: major upgrades, framework transitions,
retirement plans.

•	 Reduce provenance risk: eliminate unsupported shadow bina-
ries; use extended-support backports only as transitional con-
trols; surface lifecycle status in SBOM/risk scoring.

•	 Constrain recommendations: limit AI to approved catalogs
and sources.

•	 Steer the model: retrain/condition on enriched, policy-aligned
metadata (not popularity).

•	 Verify outputs: monitor AI-generated manifests for vulnerable/
EOL/shadow patterns and enforce dependency-aware guard-
rails in workflow.

False negative
rate / coverage
gaps (missed
vulnerable or EOL
components due
to incomplete
intelligence).

Avoidable expo-
sure = % of down-
loads/builds using
vulnerable versions
when a fix exists.

EOL footprint =
% of compo-
nents (or builds)
on unsupported
release lines.

AI policy violation
rate = % of AI-gen-
erated depen-
dency changes
that introduce
vulnerable, EOL,
or unapproved
components.

To reduce structural vulnerability debt, organizations must correct weaknesses across all three layers
of the system: data, consumption, and ecosystem. And, with increasing integration of AI into software
pipelines, reducing this risk has never been more critical.

45 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

FROM GUESSWORK TO GROUNDED

46 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

As organizations increasingly delegate critical security decisions
to AI systems, we face a fundamental challenge: even state-of-
the-art language models lack access to real-time vulnerability
databases, supply chain intelligence, and breaking change data.
As a result, AI agents are confidently recommending nonexistent
versions, introducing known vulnerabilities, and even suggesting
malware-infected packages. The model is doing all of this while
appearing authoritative.

Traditional upgrade strategies expose similar blind spots. Most Recently Published Version (Latest) heu-
ristics, which software developers simply upgrade open source components whenever a newer version
is available, assume newer means better, ignoring CVE disclosures, stability signals, and the cascade of
breaking changes that transform simple updates into multi-week migrations. Meanwhile, ungrounded
AI recommendations, regardless of the sophistication of the underlying model, operate on theoretical
patterns rather than live security intelligence. Both approaches share a critical flaw: they make decisions
without the data that actually matters and without the guardrails to guarantee code is compliant.

THIS ISN’ T AN
INDICTMENT OF AI
CAPABILITIES. IT ’S A
RECOGNITION THAT
AUTOMATION WITHOUT
LIVE INTELLIGENCE IS
DANGEROUS AT SCALE .

From Guesswork to Grounded:

AI AGENTS WITH REAL
WORLD INTELLIGENCE

https://www.sonatype.com/solutions/open-source-ai

FROM GUESSWORK TO GROUNDED

47 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

In this research, Sonatype demonstrates a
different path: AI that is grounded in live
intelligence, validated against real registries,
and guided by breaking-change analytics
governed by policy. When AI operates with
this foundation, its capabilities shift from theo-
retical suggestion engines to trusted, produc-
tion-grade decision systems.

This chapter analyzes nearly 37,000 real depen-
dency upgrades across Maven, npm, PyPI, and
NuGet to quantify how ungrounded AI coding
agents behave in practice and how security-in-
telligent governance closes the gap.

LLMs Hallucinate Versions at Scale

Across 36,870 upgrade recommendations,
27.76% referenced non-existent versions includ-
ing over 10,000 hallucinated package releases
that would never resolve in a live repository.

27.76% of dependency upgrades
were hallucinations

PROMPT

You are helping a production engineering team decide on a dependency
upgrade path.

Based on your best knowledge, recommend the version they should target.
If newer releases may exist beyond your knowledge, still provide a specific
version and explain any uncertainty.

Dependency context:
- Package: {namespace}/{name}
- Current production version: {version}
- Ecosystem: {format}

Return JSON matching the schema.

48 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

This confidence pattern was observed in a sam-
ple of real-world enterprise applications. While
production AI systems might decline to answer
when uncertain, the core issue remains: package
ecosystems evolve constantly. New versions ship
hourly. Security vulnerabilities are constantly
emerging. No training dataset, however com-
prehensive, can predict tomorrow’s CVE or
next week’s breaking change.

Sonatype’s approach doesn’t compete with
agentic AI — it completes it. By grounding recom-
mendations in live package registries, proprietary
vulnerability and malware data, and breaking
change calculations, we achieved zero AI hallu-
cinations across the same 36,870 components.
Every recommendation is verified against real
repositories. Every upgrade is assessed for
actual security impact.

The future isn’t choosing between AI and tradi-
tional tools. It’s AI agents operating with real-time
intelligence that teams can trust in production.

PERFORMANCE ANALYSIS
OF THE LLM STRATEGY

The performance analysis of the LLM
strategy (detailed in the “Grounding AI
Agents In Real-World Intelligence” section
of the Appendix) reveals an interesting
finding regarding confidence:

•	 GPT-5 was 98% accurate when it
expressed high confidence

•	 It expressed high confidence in just
3.68% of recommendations

•	 Nearly half of all “low confidence”
answers were incorrect

FIGURE 4.1

Hallucination Rates by Confidence Level

Confidence Hallucinated Valid Total Hallucination Rate
Share of
Hallucinations

High 23 1,336 1,359 1.69% 0.22%

Medium 4,504 18,959 23,463 19.20% 44.01%

Low 5,708 6,340 12,048 47.38% 55.77%

FROM GUESSWORK TO GROUNDED

49 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Security Improvement
by Upgrade Strategy
Software ages like milk, not wine. As new vul-
nerabilities are discovered and disclosed, older
package versions accumulate security debt
while newer releases incorporate patches. Every
day without upgrading increases exposure. Yet,
not all upgrade paths are created equal. We
compared four upgrade strategies across 856
enterprise applications. All strategies improved
security, but not equally.

Figure 4.2 outlines the mean security score
improvement for each application by strategy.
Percent improvement is calculated as (total
target security - total baseline security) / total
baseline security × 100, averaged across vulner-
able components from 856 enterprise applica-
tions. Security scores aggregate the severity and
count of known vulnerability types on a 0–100
scale. For example, an application with 450 base-
line points improving to 614 target points rep-
resents +36.4% security gain.

FIGURE 4.2

Mean security score improvement per application by strategy

400%

300%

200%

100%

0

Strategy

In
cr

ea
se

LLM

120.4%

Latest

267.1%

NBC

258.4%

Best

306.7%

COMPARING FOUR UPGRADE STRATEGIES
We compared four upgrade strategies across
856 enterprise applications. All strategies
improved security, but not equally

•	 LLM-generated versions (LLM)
Lowest improvement of the strategies ana-
lyzed; 345 components became less secure

•	 Most Recently Published Version (Latest)
Results in strong security outcomes but with
extreme engineering costs

•	 Sonatype ‘No Breaking Changes’ (NBC)
Chooses highest safe version without
breakage; high security gains with minimal
refactoring

•	 Sonatype Best (Best) Chooses highest ver-
sion score regardless of breaking changes;
highest security improvement overall

50 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Overall, it is generally a good idea to remediate
vulnerabilities. All upgrade strategies improve
security outcomes, but not equally. LLM-gener-
ated (LLM) upgrade recommendations show the
smallest uplift, recommending generally newer
versions without proper guidance. Sonatype
‘No Breaking Changes’ (NBC) sees a significant
improvement while identifying versions that mini-
mize or eliminate breaking changes.

Then we have the Latest version strategy, with
a significant improvement in security, but with
a high engineering cost, as we will see later. The
overall best improvement comes from the Sona-
type Best (Best) strategy, which more holisti-
cally considers the security of the components
(severity in combination) when identifying the
best upgrade path.

LLM recommendations present a troubling par-
adox. While showing an improvement overall,
the model degraded security posture for 345
components, ecommending newer versions

that introduced more vulnerabilities than they
resolved. This occurred when the model unknow-
ingly chose versions that:

•	 Were compromised after its training cutoff

•	 Carried additional CVEs

•	 Were newer, but were also riskier

MALWARE AND PROTESTWARE
RECOMMENDATIONS

The LLM strategy did more than hallucinate ver-
sions. It recommended sweetalert2 11.21.2,
which is confirmed protestware executing politi-
cal payloads, as well as color 5.0.1 and
color-string 2.1.1, which were compro-
mised in a major supply chain attack. These
packages were not obscure edge cases. They
were widely downloaded and part of a high-pro-
file security event that occurred after the mod-
el’s training data cutoff.

PROMPT

{
 “color”: {
 “recommended_version”: “5.0.3”,
 “confidence”: “high”,
 “rationale”: “Latest per Sonatype MCP; MIT licensed, no known vulnerabilities.”
 },
 “sweetalert2”: {
 “recommended_version”: “11.26.3”,
 “confidence”: “high”,
 “rationale”: “Latest stable; fixes prior malware flag and known CVE.”
 }
}

FROM GUESSWORK TO GROUNDED

51 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

THIS IS THE CORE PROBLEM: AI
CANNOT DETECT THREATS THAT
HAPPENED AFTER IT WAS TRAINED.
AI NEEDS REAL-TIME INTELLIGENCE .

While security improvements justify upgrades,
the practical question remains: what does it
cost? Breaking changes drive developer effort,
transforming version bumps into multi-day
refactoring projects. The following analysis
quantifies these costs across strategies, reveal-
ing trade-offs between security gains and imple-
mentation burden.

BREAKING CHANGE COST ANALYSIS

Security improvements come at a price measured
in developer hours and refactoring effort. Across
856 enterprise applications with representative
dependency footprints, upgrade strategies impose
dramatically different implementation costs.

Figure 4.3 below compares median per‑applica-
tion upgrade budgets across the four strategies.
NBC delivers the lowest-friction path: roughly
~1 engineer-week to modernize an entire app
while avoiding destabilizing work. Best still holds
the costs under $20K and under 200 hours per
app, yet it absorbs the additional change needed
to drive higher security scores.

51 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

FIGURE 4.3

Upgrade Cost & Effort per Application

$30,000

$20,000

$10,000

0

Strategy

M
ed

ia
n

C
os

t (
U

SD
)

LLM Latest NBC Best

192 hours

314 hours

58 hours

196 hours

52 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Both outclass the unmanaged options: uncon-
strained Latest upgrades result in nearly 5x
the median spend versus NBC, and LLM-only
selections land in the same cost bracket as Best
without the significant risk reduction.

Applying a generic ~8% copilot uplift to the same
per-app upgrade totals, NBC still modernizes
an app for a little over $5K and ~53 hours, while
chasing Latest upgrades soaks up nearly $27K
and 288 hours — over five times the spend and the
engineering time.

That gap isn’t just a bookkeeping line; it’s
opportunity cost. Every extra week poured into
unmanaged upgrades is a week not spent on
security hardening, paying down tech debt,
or feature delivery. LLM-only picks land in the
same budget band as Best yet lack its curated
risk reduction, reinforcing that disciplined Sona-
type strategies are the only way to keep upgrade

budgets predictable without cannibalizing road-
map work.

HOW COSTS SCALE :
ORGANIZATIONAL IMPACT

This projection scales each strategy’s median
per-application effort across a representative
large enterprise portfolio. It illustrates the cumu-
lative impact of decentralized upgrade decisions
over time.

In practice, organizations don’t upgrade every
dependency in every application all at once.
Instead, they perform ongoing dependency main-
tenance — small, continuous updates that, across
hundreds or thousands of applications, represent
a near-constant workload. Without a cohesive
strategy, these distributed efforts can quietly
accumulate into multimillion-dollar annual costs.

FIGURE 4.4

At Enterprise Scale: Upgrade Cost & Effort

$30M

$50M

$20M

$40M

$10M

0

Strategy

M
ed

ia
n

C
os

t (
U

SD
)

LLM

7,200 weeks

Latest NBC Best

11,775 weeks

2,175 weeks

7,350 weeks

FROM GUESSWORK TO GROUNDED

53 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

NBC automation keeps portfolio-level upgrade
effort roughly an order of magnitude lower than
unmanaged Latest adoption, while achieving
a similar security posture. Teams targeting the
most secure baseline can adopt Best selectively,
reserving deeper migrations for critical systems
where maximum vulnerability reduction warrants
the additional investment.

Our analysis of 36,870 dependency upgrade
recommendations exposes a critical divergence
between the promise of autonomous AI agents
and the reality of software supply chain security.
The data suggests that without access to real-
time package registry intelligence, both state-of-
the-art LLMs and traditional Latest heuristics fail
to balance security risk with engineering effort.

THE “ INTELLIGENCE” GAP
IN GENERATIVE AI

The most alarming finding is not merely that
ungrounded AI makes mistakes, but that it makes
dangerous ones with high confidence. The
observed 27.8% AI hallucination rate in GPT-5
recommendations confirms that language
models, when isolated from live repositories,
struggle to distinguish between existing and
non-existent software.

More critically, the “hallucinations” were not only
harmless version number errors, but also data
corruption, protestware, and hijacked packages.
This illustrates a fundamental limitation: training
data cuts off, but supply chain attacks operate in
real-time. A model trained before a package com-
promise cannot “know” a version is unsafe with-
out a live feed of vulnerability intelligence.

Furthermore, the LLM strategy delivered the
lowest security improvement (+120.4%) of all
methods tested. In 345 specific instances, fol-
lowing the AI’s advice actually degraded the com-
ponent’s security posture by introducing more
vulnerabilities than it resolved.

SWEETALERT2 VERSION 11.21.2

Data corruption & protestware

This package creates a ‘noWarMessageFor-
Russians’ banner on any Russian website
using this component that is running in a
browser using Russian.

COLOR VERSION 5.0.1 &
COLOR-STRING VERSION 2.1.1

Cryptostealer & hijack

Taken over as part of the chalk/debug
campaign, color and color-string
were manipulated to extract victims’
cryptocurrency from browser wallets.

https://www.sonatype.com/solutions/software-supply-chain-security

54 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

THE FALSE ECONOMY OF
“LATEST VERSION”

While the industry often defaults to “always
upgrade to latest” as a best practice, our cost
analysis reveals this to be a financially inefficient
strategy. While Latest achieved strong security
gains (+267.1%), it did so at a brute-force cost:
approximately $29,516 and 314 developer hours
per application. When scaled to a portfolio of
1,500 applications, the Latest strategy demands
nearly $44.3 million in estimated labor costs.

This 5x cost multiplier, compared to intelligent
automation, represents a massive opportunity
cost; every hour spent resolving breaking changes
from an unnecessary major version jump is an hour
lost to feature development or debt reduction.

Grounding is the Missing Link
The high accuracy (98%) of GPT-5 in the rare
instances (3.68%) where it expressed “High Con-
fidence” suggests that the reasoning capabilities
of modern models are sound, but their context is
insufficient.

The path forward is not to choose between AI
and traditional tools, but to ground autonomous
AI agents in verified intelligence. By feeding the
model real-time data — including computed break-
ing changes and enhanced vulnerability and mal-
ware intelligence, Sonatype’s approach eliminates
AI hallucinations entirely while empowering teams
to choose the upgrade path (Best vs. No BC) that
aligns with their risk tolerance and budget.

327%
security gain from remediating
vulnerable components

2.1X
lower dependency upgrade cost and
effort compared to Latest Version

SONATYPE SECURITY HYBRID
You can also take a hybrid approach that puts security first in the version scoring algorithm.
When a version has a perfect security score, it recommends NBC; otherwise, it defaults to
the Best recommendation. This results in:

54 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

HOW WE GET TO $ 44M AT
THE ENTERPRISE SCALE

•	 180 dependencies per app × ~$161
per app = ~$29.5K per app

•	 1,500 apps × $29K = ~$44.3M

https://www.sonatype.com/hubfs/Q3%202021-State%20of%20the%20Software%20Supply%20Chain-Report/SSSC-Report-2021_0913_PM_2.pdf
https://www.sonatype.com/hubfs/Q3%202021-State%20of%20the%20Software%20Supply%20Chain-Report/SSSC-Report-2021_0913_PM_2.pdf

TRANSPARENCY AS THE NEW TRUST

55 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Transparency has become the currency of software supply chain security.
Around the globe, policymakers and regulatory bodies have moved from rhetoric to regulation on that
principle. SBOMs (Software Bills of Materials), attestations, and provenance tracking are no longer
optional. They’re being elevated as expressions of transparency, codified in law, and embedded into how
organizations will be required to demonstrate security readiness. We estimate 90% of global organiza-
tions fall under one or more regulatory requirements to demonstrate evidence of software assurance.

In this chapter, we map the current regula-
tory landscape, identify key changes and
enforcement deadlines as of the end of
2025, and forecast how organizations should
prepare. We show how software compliance
is shifting from policy to code and why teams
that treat transparency as an engineering
challenge will win.

UP TO 90%
of organizations around the world will fall
under one or more regulatory requirements

The 2025 Global Software Assurance Mandate:

TRANSPARENCY
AS THE NEW TRUST

https://www.sonatype.com/resources?category=158044913215
https://www.sonatype.com/resources?category=158041693505

TRANSPARENCY AS THE NEW TRUST

56 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

From Open Source Governance
to Regulatory Mandate
For years, SBOMs, consumption governance,
and software supply chain transparency were
treated as best-practice responses to technical
risk. What changed in 2025 is that transparency
moved from optional to required. Across regions,
regulations are converging on the same basics:
minimum SBOM elements, interoperable formats,
and proof of secure development practices. The
focus is no longer just what’s in the software, but
who delivered it and how it was built and shipped.

This shift is also changing how compliance
works. Manual checklists are giving way to
automation and “compliance as code,” because
procurement, audits, and enforcement increas-
ingly demand auditable evidence. Vendors are
expected to show, not just claim, that they gener-
ate SBOMs, track provenance, sign artifacts, and
provide attestations when asked.

As a result, open source governance is now
squarely in the regulatory spotlight. Policies that
once lived as internal guidelines are becoming
obligations, driven by frameworks such as the
EU Cyber Resilience Act and NIS2, alongside U.S.
Executive Order 14028. OSS components, forks,
transitive dependencies, and license ambiguity
can create exposure not only through security
risk, but through procurement breach, audit
failure, or product liability. The UK is moving
in the same direction. The Cyber Security and
Resilience Bill, recently introduced to Parliament,
signals expanded scope and faster incident
reporting, reinforcing that assurance has to be
operational, repeatable, and provable.

Sonatype sees this evolution as a positive forcing
function. The industry already knows what “good”
looks like: mapped dependencies, SBOMs, signed
provenance, and attestable secure practices.
The work now is making those outputs default by
embedding them directly into development and
release workflows.

GLOBAL REGULATORY TIMELINE
May 12, 2021

US Executive Order 14028 signed.

July 12, 2021

US NTIA publishes SBOM “Minimum Elements.”

January 16, 2023

NIS2 and DORA enter into force in the EU.

December 1, 2023

Australia’s ASD ISM first edition released.

October 18, 2024

NIS2 compliance measures apply in the EU.

December 10, 2024

EU Cyber Resilience Act (CRA) entered
into force.

January 17, 2025

DORA compliance measures apply in the EU.

July 25, 2025

CERT-in mandatory annual third-party
cybersecurity audits in India.

November 12, 2025

UK CSRB introduced to parliament.

https://www.sonatype.com/resources/guides/eu-cyber-resilience-act-guide
https://www.sonatype.com/resources/guides/nis2-compliance
https://www.sonatype.com/blog/from-awareness-to-assurance-in-federal-software-development
https://www.sonatype.com/blog/from-awareness-to-assurance-in-federal-software-development
https://www.gov.uk/government/collections/cyber-security-and-resilience-bill
https://www.gov.uk/government/collections/cyber-security-and-resilience-bill

57 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

THE REGULATORY MAP: WHERE THINGS STAND AT THE END OF 2025

US Commercial
EO 14028

Note: On January 23, 2026, OMB issued Memorandum M-26-05 rescinding the standardized secure software self-attestation
approach and directing agencies to use a risk-based model for software assurance, including requesting SBOMs when appropriate.

United Kingdom
Cyber Resilience Bill

US Federal Agencies
SSDF, CISA attestation
form, SBOM guidance

India
CERT-In / SEBI
expectations

European Union
NIS2, CRA,
DORA, AI Act

Australia
ASD ISM and
continued
Essential 8
emphasis

EMERGING
REQUIREMENTS /
GUIDANCE ONLY

•	 India

MANDATES
ADOPTED / IN
TRANSITION

•	 United Kingtom
•	 United States

(Commercial)
•	 Australia

MANDATES IN
FORCE / DETAILED
GUIDANCE

•	 European Union
•	 United States

(Federal)

57 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

TRANSPARENCY AS THE NEW TRUST

58 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

United States Software
Regulations

In the U.S., the federal approach has matured into
a multi-layered regime. The foundation lies in the
NIST SP 800‑218 (Secure Software Development
Framework, SSDF) and the self-attestation and
verification regime instituted under Executive
Order 14028 and related OMB memoranda (such
as M-22-18 and M-23-16). The Cybersecurity and
Infrastructure Security Agency (CISA) has pub-
lished the Secure Software Development Attesta-
tion Form, which vendors must submit to certify
adherence to secure development practices.

Federal procurement rules now condition soft-
ware eligibility on those attestations, and as
noted by the Government’s Software Acquisition

Guide, procurement agencies are being guided
to require transparency via SBOMs, signed arti-
facts, and auditable supplier processes.

For federal agencies, this has broader implica-
tions: the procurement lifecycle now explicitly
links security software assurance to procurement
eligibility, renewal cadence, and supplier audits.
Vendors that cannot demonstrate attestations or
generate SBOMs may simply be disqualified.

In our view, organizations outside of federal
scope but working in critical verticals should view
this as indicative of what is coming in the private
sector: procurement leverage, audit readiness,
and transparency of supply chain footprint will
become table stakes.

European Union Software
Regulations
Europe has launched multiple landmark pieces of
legislation in the software supply chain and prod-
uct cybersecurity domain.

NIS2 + IMPLEMENTING REGULATION

The NIS2 Directive (Directive (EU) 2022/2555)
entered into force in January 2023 and introduced
higher standards for cybersecurity risk manage-
ment, incident reporting, and software supply chain
security for “essential” and “important” entities.
The Commission Implementing Regulation (EU
2024/2690) defines more specific technical and
methodological requirements. In June 2025, the
European Union Agency for Cybersecurity (ENISA)
published technical implementation guidance for
the software regulation, mapping each requirement
to evidence, frameworks, and standards.

☑ Attestation that their development
practices align with SSDF.

☑ Minimum Elements for SBOMs (in
one of the formats specified by the
National Telecommunications and
Information Administration (NTIA)
and supplemented by CISA.

☑ Evidence of component provenance,
vulnerability handling, and in some
cases third-party assessment.

SOFTWARE VENDORS SEEKING
FEDERAL CONTRACTS
MUST PROVIDE :

https://csrc.nist.gov/pubs/sp/800/218/final
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf
https://www.cisa.gov/secure-software-attestation-form
https://www.cisa.gov/secure-software-attestation-form
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022L2555
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202402690
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202402690
https://www.enisa.europa.eu/publications/nis2-technical-implementation-guidance
https://www.cisa.gov/resources-tools/resources/2025-minimum-elements-software-bill-materials-sbom

59 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

NIS2 explicitly requires organizations to manage
software supply chain security risks, incorpo-
rate secure-by-design and secure procurement
principles into system acquisition and devel-
opment, and demonstrate effective software
governance. Organizations in scope must main-
tain documented risk management policies,
implement incident detection and handling pro-
cesses, and assess and manage the cybersecu-
rity posture of suppliers.

CYBER RESILIENCE ACT (CRA)

The CRA (Regulation (EU) 2024/2847) estab-
lishes a horizontal regulatory framework for
“products with digital elements” (PDEs). It
entered into force on December 10, 2024. Its
main obligations begin to apply in December
2027, after a three-year transition period. Certain
vulnerability handling and reporting obligations
start earlier, in September 2026.

Under the CRA, manufacturers must ensure that
products are designed, developed, and produced
in accordance with essential cybersecurity
requirements. This includes implementing Secure
by Design practices, performing and document-
ing risk assessments, and ensuring ongoing
vulnerability handling throughout the support
period they specify. When integrating third-party
components, including free and open source
software, manufacturers remain responsible
for assessing risks and maintaining appropriate
technical documentation.

The CRA requires manufacturers to maintain
detailed technical documentation about secu-
rity properties and supply chain dependencies.

While the software regulation anticipates greater
transparency of software components, it does
not explicitly prescribe an SBOM format; how-
ever, it does empower the Commission to adopt
delegated acts specifying additional elements or
procedures, which could include SBOM-related
requirements in the future.

A notable feature of the CRA is that it brings
certain actors in the open source ecosystem
into scope. Specifically, “open source software
stewards” are identified as individuals who play a
coordinating role in the development and distri-
bution of widely used OSS.

They may be subject to obligations such as
adopting documented cybersecurity processes,
providing attestations, and cooperating with
market surveillance authorities. These obli-
gations apply only where such stewards meet
the criteria defined by the regulation and are
not intended to cover individual volunteer
contributors.

In parallel, the revised EU Product Liabil-
ity framework (Regulation (EU) 2024/2853)
extends no-fault liability to software and dig-
ital products. Non-compliance with the CRA’s
cybersecurity obligations may therefore expose
manufacturers to strict product liability for
damage caused by vulnerabilities or security
defects in products with digital elements, irre-
spective of fault or negligence.

From our perspective at Sonatype, CRA and
NIS2 together represent a sea-change: software
and products containing digital elements are
regulated from design through maintenance;
transparency and SBOMs are wired in. The mes-
sage: software compliance requires end-to-end
visibility, not after-the-fact patching.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202402847
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202402853
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202402853

TRANSPARENCY AS THE NEW TRUST

60 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Other Key Jurisdictions
Beyond the U.S. and EU, several jurisdictions are
aligning with this global transparency movement.

While SBOM mandates are less mature than
in the U.S. or EU, regulated entities are being
required to establish software supply chain doc-
umentation and risk management programs as
an expectation.

In 2025, those frameworks began emphasizing
software supply chain transparency, SBOMs,
and supplier assurance as differentiators for
procurement in critical sectors.

From Sonatype’s vantage point: while regulatory
maturity varies, the direction is consistent globally.
Firms that invest in transparency and software
assurance now will gain a competitive advantage.

Regulated Industries: From
Obligation to Opportunity
Historically, heavily regulated industries, includ-
ing financial services, healthcare, and critical
infrastructure, have been the earliest adopters
of software assurance and SBOM mandates. The
regulatory developments emerging in 2025 are
broadening that landscape.

Under DORA, financial institutions and their ICT
third-party providers must implement compre-
hensive ICT-risk-management frameworks, inci-
dent reporting processes, and supplier-
governance controls. Requirements for docu-
menting cyber resilience strategies and demon-
strating oversight of software supply chain risk
are now appearing in procurement cycles and
audit practices.

In 2025, multiple regulatory bodies began explic-
itly treating artificial intelligence components,
including models, training data, evaluation pipe-
lines, and automated decision systems, as soft-
ware artifacts subject to supply chain controls.

The AI-compliance landscape is rapidly matur-
ing, led by the EU AI Act’s staggered phase-in
schedule and U.S. federal guidance following
Executive Order 14110 (later replaced by Execu-
tive Order 14179).

In India, the Indian Computer Emergency
Response Team (CERT-In) and the
Securities and Exchange Board of India
(SEBI) have updated incident reporting
obligations and disclosure requirements.

In Australia, the Australian Signals
Directorate (ASD) Information Secu-
rity Manual (ISM) and the “Essential
8” framework have long influenced
cyber-maturity expectations.

https://artificialintelligenceact.eu/
https://bidenwhitehouse.archives.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/presidential-actions/2025/01/removing-barriers-to-american-leadership-in-artificial-intelligence/
https://www.whitehouse.gov/presidential-actions/2025/01/removing-barriers-to-american-leadership-in-artificial-intelligence/
https://www.cert-in.org.in/
https://www.cert-in.org.in/
https://www.sebi.gov.in/
https://www.sebi.gov.in/
https://www.asd.gov.au/
https://www.asd.gov.au/
https://www.cyber.gov.au/business-government/asds-cyber-security-frameworks/ism
https://www.cyber.gov.au/business-government/asds-cyber-security-frameworks/ism

61 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Formats and Interoperability
The two dominant SBOM schemas are SPDX and CycloneDX. SPDX has traditionally excelled in open
source license compliance and metadata governance; CycloneDX is particularly effective for vulnera-
bility/component dependency correlation and CI/CD integration. In practical terms, organizations must
evaluate when to use which schema: for licensing-governance pipelines SPDX may be the default; for live
software supply chain tools, vulnerability context and runtime telemetry, CycloneDX may be preferable.

Interoperability is increasingly mandated. For example, the CRA allows the European Commission
to specify by delegated acts the format and elements of SBOMs for products with digital elements.
“Attestation” too has become the currency of procurement and audit readiness. In the U.S., CISA’s
attestation form formalized vendor self-attestation to SSDF practices. Similarly, the EU regulatory
regimes expect documented evidence of risk assessments, vulnerability-handling procedures, and
software assurances.

The key operational lesson here is that transparency must be engineered: organizations must treat
SBOM generation, artifact signing, attestation capture, and publishing as part of the build-and-re-
lease pipeline — not as an afterthought. The enforcement regime is moving from “show us your pol-
icy” to “show us the artifact”.

SBOM & ATTESTATION FORMATS

Category SPDX CycloneDX Notes

Licensing &
IP metadata

strong

mixed

SPDX is fundamentally license-first (SPDX expressions, compliance
lineage). CycloneDX carries license data well, but SPDX remains the
legal/compliance “gold standard.”

Vulnerability /
Dependency
correlation

mixed

strong

CycloneDX was designed with security and dependency graphs in
mind. SPDX supports this, but it’s not the primary design center.

CI/CD
Friendliness

mixed

strong

CycloneDX is more commonly generated by modern build tools,
scanners, and CI jobs. SPDX is used in CI/CD, but more often post-
build or for compliance artifacts.

Ecosystem
Tooling &
Adoption

mixed

strong

CycloneDX has stronger momentum in AppSec, SCA, and cloud-na-
tive tooling. SPDX remains dominant in regulated, supplier-driven,
and government contexts — strong, but slower-moving.

strong mixed

61 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

TRANSPARENCY AS THE NEW TRUST

62 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Open Source License Compliance
in the New Regime
Key risk patterns include transitive copyleft
propagation (when combining or distributing
code with copyleft-licensed dependencies
can trigger downstream obligations), unclear
or missing license metadata, and forked com-
ponents that diverge from upstream develop-
ment, making provenance and patch-tracking
difficult. The compliance challenge is to define
meaningful metrics. For example, the percent-
age of components with approved licenses,
the number of license conflicts detected pre-
merge, and the mean remediation time for
license-non-compliant usage. While current
compliance regimes rarely specify exact thresh-
olds for these metrics, the trend is clear: orga-
nizations that cannot demonstrate open source
license compliance of intake and remediation
are increasingly disadvantaged in procurement,
audit, and regulatory contexts.

Under the CRA, for instance, open source soft-
ware stewards must put in place and document
in a verifiable manner a cybersecurity policy and
cooperate with market surveillance authorities
and CSIRTs/ENISA in certain circumstances.
They may also need to provide security docu-
mentation and, in some cases, attestations of
compliance. At Sonatype, we increasingly advise
clients that an open source intake policy is no
longer just software governance best practice —
it is rapidly becoming a compliance expectation.

The practical implication is that organizations
must operationalize OSS intake, contribution, and
remediation workflows; integrate open source
license compliance scanning and component
metadata tracking into CI/CD; ensure SBOMs

capture accurate license data; and maintain audit
logs of intake decisions. Downstream, procure-
ment teams are beginning to require supplier
attestations that OSS intake and license gover-
nance policies are in place and followed.

Bringing Policy into Reality
Whether your discussion is around Compli-
ance-as-Code, Policy-as-Code, GRC Engineer-
ing, or some other umbrella term — the industry
is shifting toward automated governance to
keep pace with the exponential acceleration
in both software development speed and mal-
ware presence.

As we can see in the CNCF’s Automated Gover-
nance Maturity Model and OpenSSF’s Gemara,
software development lifecycles can be signifi-
cantly accelerated while improving compliance
outcomes by ensuring codification and automa-
tion at every opportunity:

•	 Writing organizational policies in a
machine-optimized format reduces friction for
both human and AI interactions as tools inter-
face with structured data. Policies turn com-
pliance into a foundational design requirement
instead of being stapled on after development.

•	 Selection of development tools can be done
with early feedback according to policy,
informed by supplier onboarding workflows:
standardized questionnaires, third-party
assessment checklists, attested secure devel-
opment practices.

https://tag-security.cncf.io/community/resources/automated-governance-maturity-model/
https://tag-security.cncf.io/community/resources/automated-governance-maturity-model/
https://gemara.openssf.org/model/

63 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

•	 Development tools can provide early feedback
both in the IDE and at pull/merge time with
evaluation and enforcement of priorities such
as license requirements and trusted depen-
dency registries; blocking patterns if disallowed
licenses or untrusted sources are requested.

•	 Deployment builds can automatically evaluate
code and enforce requirements such as gen-
eration of SBOMs (SPDX or CycloneDX) with
all dependencies, versions, metadata, and sig-
natures. At release time, attachment of signed
provenance data and attestation, artifacts to
the release package.

•	 Audits become streamlined by using compiling
machine-readable policies, evaluation logs,
enforcement results, and relevant artifacts
(e.g., via a customer-accessible portal, or pub-
lic registry) to support audit, procurement, or
regulator review.

The question is not whether your organiza-
tion can produce an SBOM or attestation but
whether it has the automation, traceability, and
audit-readiness baked into the build workflow.
Compliance is not an add-on; it must be part of
the entire software development lifecycle.

COMPLIANCE-AS - CODE

POLICY

Capture compliance
requirements alongside
design documentation

ACCEPTANCE
CRITERIA

DEPLOYMENT

Ensure deployments
meet CVE and other

requirements

 VULN & COMPONENT
HEALTH GATES

DEVELOPMENT

Equip developers with
policy-informed tools

AI, SAST, SCA,
& SBOMs

AUDIT

SBOM + attestations
accessible on demand

EVIDENCE FOR PROCUREMENT
& REGULATORS

TRANSPARENCY AS THE NEW TRUST

64 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

METRICS AND MATURITY
FOR SELF-ASSESSMENT

Transparency and software compliance readi-
ness must be measured. Sonatype recommends
organizations track four dimensions: Coverage,
Integrity, Responsiveness, and Assurance.

•	 Coverage: What proportion of shipped arti-
facts include SBOMs? What percentage of
components have declared licenses and an
explicit policy decision?

•	 Integrity: How deep is your SBOM (i.e., depen-
dency depth)? Are provenance records signed
and traceable? Is your rebuild reproducible?
What signal-to-noise ratio do your scans pro-
duce (i.e., real vulnerabilities vs false positives)?

•	 Responsiveness: What is your mean time to
provide a customer or regulator an SBOM or
attestation? What is your mean time to resolve a
non-compliant license usage? What is the median
time to apply a post-release security update?

•	 Assurance: What percentage of releases meet
SSDF-defined attestation? What percentage
of your suppliers provide verifiable artifacts
(SBOMs, signed provenance, secure develop-
ment attestation)?

Software Assurance as Currency
2025 marked the inflection point. In 2026, soft-
ware assurance becomes the standard by which
software earns trust. Transparency through
SBOMs, attestations, and provenance is moving
from policy to regulation, from a nice-to-have to
a procurement requirement, and from an audit
checkbox to a competitive differentiator.

Sonatype views these mandates as catalysts for
safer software. When compliance is built into the
delivery process, software becomes more mea-
surable, auditable, and secure.

Organizations that embed transparency into
build pipelines, integrate supplier attestations
into procurement, and treat SBOMs and prove-
nance as first-class artifacts will be ahead of the
curve. Everyone else risks procurement lockout,
audit disruption, and downstream liability.

IN 2026, COMPLIANCE IS NOT JUST
ABOUT AVOIDING PENALTIES. IT
IS ABOUT EARNING TRUST, AND
TRUST IS THE CORE ASSET OF
THE SOFTWARE SUPPLY CHAIN.

SOFTWARE MATURITY ASSESSMENT

Control Metric Readiness

Transparency % of artifacts
with SBOM
provenance

90% =
Mature

Licensing % depen-
dencies with
approved
license

90%+ =
mature

Security
Response

Mean time
to patch
vulnerabilities

<15 days =
mature

Attestation Releases
meeting SSDF
standard

80%+ =
mature

65 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

ONE-YEAR SOFTWARE COMPLIANCE PLAYBOOK
Based on our experience across clients and regulatory developments, here is a recommended
playbook for organizations aiming to be fully compliant (and competitive) in a world of compliance
through governance.

By the end of the year, your goal should be: all major releases produce SBOMs, all software vendors/
suppliers have attested secure-development practices, all major components have approved licenses,
and compliance metrics are live in software governance dashboards.

Timeframe Primary Goal Key Actions Outputs

0–3
MONTHS

3–6
MONTHS

6–12
MONTHS

ESTABLISH
OWNERSHIP
AND BASELINE

OPERATIONALIZE
COMPLIANCE
IN CI/CD

EXTEND TO
SUPPLIERS AND
AUDIT READINESS

•	 Name cross-functional compliance
owners

•	 Inventory SBOM coverage
•	 Choose SPDX/CycloneDX
•	 Validate toolchain
•	 Run attestation gap analysis (signing,

pipeline evidence, vuln mgmt)

•	 Require SBOM per release
•	 Sign and (if needed) publish
•	 Map obligations (CRA/NIS2/AI Act

as applicable)
•	 Define required artifacts
•	 Implement compliance-as-code

(license gate, SBOM at build,
provenance at release)

•	 Start metrics

•	 Standardize supplier onboarding
•	 Require supplier attestations,

SBOMs, signed provenance
•	 Quarterly reporting dashboards
•	 License conflict + copyleft workflows
•	 Make artifacts accessible and

auditable

•	 Ownership
model

•	 SBOM
baseline

•	 Schema
decision

•	 Gaps list

•	 SBOM +
signed prov-
enance in
pipeline

•	 Obligations/
artifact
catalog

•	 Initial metrics

•	 Supplier
requirements
in place

•	 Dashboards
•	 Audit-ready

evidence
repository

65 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

APPENDIX

66 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

Methodology

REGISTRIES, MODELS, AND THE NEW SOFTWARE
INFRASTRUCTURE BURDEN: WHEN GROWTH MEETS GRAVITY

This chapter is based on Sonatype’s analysis of registry consumption and infra-
structure load signals drawn from aggregated telemetry across major open source
ecosystems (with Maven Central used as a primary lens where noted). The study
examined download and re-download behavior over the report’s specified reporting
windows, focusing on how automated software delivery systems (CI/CD pipelines,
ephemeral build fleets, and dependency managers) amplify demand on shared regis-
try infrastructure.

Sonatype Security Research Team evaluated registry load and sustainability pres-
sure using four primary measures:

•	 Growth and concentration: overall request volume trends and the degree to which
traffic is dominated by a small set of high-volume consumers.

•	 Re-download intensity: repeat-fetch behavior for the same artifacts, used as a
proxy for cache inefficiency and rebuild amplification.

•	 Burstiness and hotspots: peak download behavior (e.g., 95th percentile pat-
terns) to distinguish steady consumption from spiky traffic that strains shared
infrastructure.

•	 Source footprint signals: directional indicators such as distinct IP counts and dis-
tribution patterns to infer automation characteristics (shared egress/NAT, central-
ized runners), without treating IPs as definitive identity.

While the chapter focuses on open source registry dynamics, the patterns identified
(automation-driven amplification, concentrated demand, and cache fragility) reflect
broader structural pressures affecting modern software supply chains. All quantita-
tive results reflect a point-in-time snapshot as of the report’s stated verification date,
and are reported in aggregate to avoid attribution to specific organizations or users.

67 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

THE EVOLVING SOFTWARE SUPPLY CHAIN ATTACK SURFACE :
MALWARE AT THE GATE

This chapter is based on Sonatype’s analysis of malicious open source packages iden-
tified through a mix of automated detection and expert review, using publicly observ-
able package metadata and Sonatype threat intelligence. We evaluated packages
observed within the report’s stated window using a consistent, multi-label threat tax-
onomy (one package may map to multiple behaviors), normalized duplicates/variants
to avoid inflating counts, and used clustering signals (payload and code reuse, naming
patterns, publisher behavior, dependency relationships, and shared infrastructure) to
identify coordinated campaigns. Findings are reported in aggregate as a point-in-time
snapshot as of the report’s verification date.

THE THREE LAYERS OF FAILURE IN MODERN
VULNERABILITY MANAGEMENT

The Data Layer: This analysis evaluates the quality and usefulness of vulnerability
records for open source by comparing public advisory data with Sonatype’s enriched
vulnerability intelligence. We assembled a study set of 1,718 open source–relevant CVE
records disclosed within the report’s defined window (January 1, 2025 to December
31, 2025), drawing from publicly available sources (including NVD/CVE metadata and
CVSS where present) and Sonatype Security Research. For each CVE, the Sonatype
Security Research Team assessed five core dimensions that directly affect whether
teams can make consistent remediation decisions: (1) coverage (whether NVD provides
usable CVSS/severity and how often that aligns with Sonatype), (2) scoring consis-
tency (magnitude and direction of CVSS score drift between NVD and Sonatype, plus
resulting severity-category shifts), (3) false positives (records or affected-version
claims that would trigger remediation for non-impacted software), (4) false negatives
(missing, incomplete, or delayed records/metadata that would cause impacted soft-
ware to be missed), and (5) timeliness (time between public CVE disclosure and avail-
ability of NVD analysis/scoring). Results are reported at the CVE level using consistent
matching rules across sources, with percentages rounded for readability; all findings
reflect a point-in-time snapshot verified as of the report’s stated “as of” date.

APPENDIX

68 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

The Consumption Layer: This section is based on Sonatype’s analysis of Maven
Central download telemetry to measure real-world consumption of known vulnerable
vs. fixed component versions. We constructed a dataset of components with publicly
disclosed vulnerabilities and an available remediated (fixed) release, then measured
how frequently vulnerable versions continued to be downloaded relative to their fixed
counterparts over the report’s stated time windows. Downloads are treated as a con-
sumption signal (what build systems actually pull), not as a proxy for unique users,
and results are reported in aggregate to quantify avoidable risk—cases where vulner-
able versions remain in active use even though safer versions exist.

The Ecosystem Layer:
Prevalence of EOL components
We analyzed a representative sample of more than 3,000 enterprise SBOMs. For
each SBOM, we examined the fully resolved dependency graph, including all transi-
tive dependencies, and identified the number of package versions that were end-of-
life. We calculated the percentage of EOL components per SBOM and then aggre-
gated these results across all enterprises to measure overall EOL prevalence.

Number of EOL components with unpatched CVEs
We analyzed a database of over 11 million package versions with known end-of-life
status and known, unpatched CVEs. This analysis identified approximately 81,000
EOL package versions with unpatched vulnerabilities. To estimate ecosystem-wide
impact, we weighted this dataset against the broader population of open-source
package versions, normalizing for selection bias introduced by database coverage
and sourcing constraints. This produced an estimated total of more than 400,000
end-of-life package versions with unpatched CVEs across open-source ecosystems.

Breakdown of EOL Components by Registry
We analyzed a database of over 11 million package versions with known end-of-life
status and grouped them by package registry. Within each ecosystem, we calculated
the percentage of package versions that are end-of-life versus those that are currently
supported. This resulted in a per-ecosystem end-of-life rate, as shown in the chart.

69 2026 STATE OF THE SOFTWARE SUPPLY CHAIN

FROM GUESSWORK TO GROUNDED: AI AGENTS
WITH REAL WORLD INTELLIGENCE

We analyzed a sample of enterprise applications scanned over a three-month window
(June–August 2025), filtering to valid scans (those with >10 components) to remove
setup/test/incomplete results. For apps with multiple stages, we selected the most
operationally mature snapshot using the hierarchy compliance > operate > release
> build > develop > proxy, and then took each app’s first valid scan within the period.
Analysis focused on four ecosystems (Maven, npm, PyPI, NuGet) and used direct
dependencies identified by Sonatype’s component recognition as upgrade candi-
dates; apps that migrated into/out of an ecosystem during the window were kept to
reflect real-world complexity.

We compared five upgrade strategies: No Breaking Changes (highest version score
without breaking changes), Latest (most recent by publication date), Sonatype Best
(highest version score regardless of breaking changes), Sonatype Security Hybrid
(use No Breaking Changes only if it achieves a perfect security score of 100, other-
wise fall back to Best), and an LLM strategy where GPT-5 (reasoning_effort=medium)
returned a JSON recommendation (version, confidence, short rationale) per depen-
dency (≈37,000 components, processed asynchronously with concurrency). Break-
ing-change effort was modeled using four buckets (0–5, 6–20, 21–100, 101+ changes)
mapped to estimated hours and cost at $94/hr (conservative lower bound), with
SemVer fallbacks when telemetry is unavailable (patch→L1, minor→L2, major→L3; L4
requires explicit data).

Security outcomes were measured via a 0–100 security score derived from Sona-
type vulnerability intelligence, combining the worst-severity issue with the count of
distinct vulnerability types (log-transformed to reflect diminishing marginal impact).
Strategy comparisons used Welch’s t-tests across primary outcomes (security score
change and breaking-change count) at α=0.05.

Sonatype is the leader in AI-driven DevSecOps. As the maintainers of Maven Central and creators
of Nexus Repository, Sonatype has spent two decades pioneering how the world manages and
secures open source software — making Sonatype the trusted authority for modern software supply
chains. With unmatched open source visibility and a unified product suite built for modern software
development, Sonatype gives enterprises the intelligence and automated governance they need to
harness the full potential of open source and AI. Sonatype handles the complexity behind the scenes:
guiding component and model selection, blocking harmful malicious code, automating dependency and
vulnerability management, and ensuring faster, more reliable builds — so developers spend more time
on innovation and less time on remediation and rework. Trusted by more than 15 million developers,
Sonatype helps power secure, modern software development at nearly 2,000 global organizations
including 70% of the Fortune 100. To learn more about Sonatype, please visit www.sonatype.com.

https://www.sonatype.com

	Foreward
	Executive Summary
	Registries, Models, and the
New Software Infrastructure Burden
	when growth
meets gravity
	Open Source Scale Has Become a Structural Risk
	Registry Consumption
	Real Innovation vs. Synthetic Volume
	The Commons is Cracking
	What Responsible Consumption Looks Like

	The Evolving Software
Supply Chain Attack Surface
	malware
	at the gate
	A Turning Point for
Open Source Malware
	The Threat Taxonomy: What Open Source Malware Does Today
	How North Korea
Weaponizes Open Source
	The Open Source Malware Supply Chain
	Emerging Threats
	How Will Software Supply Chain Attacks Evolve?

	The Three Layers of Failure in
	Modern Vulnerability Management
	The Limits of Modern Vulnerability Management
	The Data Layer Is Breaking Down
	Poor Consumption Patterns Sustain Avoidable Risk
	When the Ecosystem Stops Maintaining Your Software
	How the Three Layers Compound Each Other
	Modernizing Vulnerability Management

	From Guesswork to Grounded:
	AI Agents with Real World Intelligence
	Version Hallucination: LLMs Hallucinate Versions at Scale
	Security Improvement by Upgrade Strategy
	Grounding is the Missing Link

	The 2025 Global Software Assurance Mandate:
	Transparency
as the New Trust
	Transparency has become the currency of software supply chain security.
	From Open Source Governance to Regulatory Mandate
	United States Software Regulations
	European Union Software Regulations
	Other Key Jurisdictions
	Regulated Industries: From Obligation to Opportunity
	Formats and Interoperability
	Open Source License Compliance in the New Regime
	Bringing Policy into Reality
	Software Assurance as Currency
	Methodology

