
Best practices for 
SBOMs in DevSecOps

Automated SBOM generation

•	 Automate for precision: Leverage automation tools for each software build, ensuring 
your SBOM is always accurate and current.

•	 Separate build and release: Incorporate SBOMs within your software development life 
cycle (SDLC) to enable monitoring. Also ensure SBOM data is meticulously captured 
and securely retained for versions that are released, deployed, or shipped.

Integration with DevSecOps workflow

•	 CI/CD pipeline embedding: Incorporate SBOM generation and management tools 
within CI/CD workflows for automatic security assessments.

•	 In-depth component scanning: Ensure SBOMs are created with accurate identification 
tied to deep, timely, accurate data to ensure a proper view of risk.

Strategic utilization

•	 Rapid vulnerability response: Quickly identify and remediate vulnerabilities identified 
via SBOMs to ensure compliance and secure software components.

•	 Assurance: Maintain audit-ready compliance by importing and retaining every SBOM 
unlocking rapid response to incidents, audits, and compliance requests.

Collaboration and accessibility

•	 Universal access: Grant all relevant teams access to an SBOM application or interface 
to foster a collaborative security culture.

•	 Targeted training: Provide education on the advantages and interpretations of SBOMs, 
emphasizing security implementations.

CHEAT SHEET

https://www.sonatype.com/launchpad/guide-to-software-development-life-cycle
https://www.sonatype.com/launchpad/guide-to-software-development-life-cycle


Tools and services

•	 Focus on integration and automation: Opt for tools that offer seamless workflow integration, 
automate SBOM generation, and provide comprehensive scanning for security and compliance.

•	 Choose dual-purpose tools: Ensure your tools support both integrated SBOM gen-
eration during the SDLC and efficient management of 1st- and 3rd-party applications, 
enabling risk and compliance oversight across your software ecosystem.

Continuous monitoring and feedback

•	 Alert system: Implement an alert mechanism for newly discovered vulnerabilities in 
existing SBOMs that could be affecting your 1st- and 3rd-party software components.

•	 Iterative improvement: Establish feedback loops for continuous refinement of your 
SBOM strategy, adapting to emerging security challenges and tech advancements.

Implementation steps
Evaluate current 
processes: Assess how 
existing development and 
security workflows align 
with SBOM capabilities.

Select appropriate 
tools: Choose SBOM 
and DevSecOps 
tools that offer easy 
integration, scanning 
capabilities, and 
support for SBOM 
management.

Automate SBOM 
integration: 
Automate SBOM 
generation within 
your CI/CD pipeline 
for consistent 
updates and 
scanning.

Procurement and 
3rd-party SBOM 
management: Implement 
processes for ingestion 
and management of 
SBOMs from 3rd-party 
vendors, ensuring they 
meet your security and 
compliance standards.

Establish Governance, Risk and Compliance 
[GRC] protocols: Integrate SBOM insights into your 
governance, risk management, and compliance 
(GRC) framework to enhance decision-making and 
regulatory adherence.

Enable teams: Educate development, 
security, and operations teams on 
utilizing SBOMs for enhanced security.

Make available to customers: Develop 
and implement a process to share 
verified SBOMs with customers, 
enhancing transparency and trust in your 
software’s security and compliance.

Implement monitoring and risk assess-
ment: Establish continuous monitoring 
of SBOM data for real-time threat and 
vulnerability assessment, ensuring 
immediate response and mitigation.

Monitor performance: Regularly 
assess the effectiveness of SBOM 
integration on security posture and 
make necessary optimizations.


